Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress
Genetic improvement of Saccharomyces cerevisiae wine strains for enhancing cell viability after desiccation stress
AbstractIn the last few decades spontaneous grape must fermentations have been replaced by inoculated fermentation with Saccharomyces cerevisiae strains as active dry yeast (ADY). Among the essential genes previously characterized to overcome the cell‐drying/rehydration process, six belong to the group of very hydrophilic proteins known as hydrophilins. Among them, only SIP18 has shown early transcriptional response during dehydration stress. In fact, the overexpression in S. cerevisiae of gene SIP18 increases cell viability after the dehydration process. The purpose of this study was to characterize dehydration stress tolerance of three wild and one commercial S. cerevisiae strains of wine origin. The four strains were submitted to transformation by insertion of the gene SIP18. Selected transformants were submitted to the cell‐drying–rehydration process and yeast viability was evaluated by both viable cell count and flow cytometry. The antioxidant capacity of SIP18p was illustrated by ROS accumulation reduction after H2O2 attack. Growth data as cellular duplication times and lag times were calculated to estimate cell vitality after the cell rehydration process. The overexpressing SIP18 strains showed significantly longer time of lag phase despite less time needed to stop the leakage of intracellular compounds during the rehydration process. Subsequently, the transformants were tested in inoculated grape must fermentation at laboratory scale in comparison to untransformed strains. Chemical analyses of the resultant wines indicated that no significant change for the content of secondary compounds was detected. The obtained data showed that the transformation enhances the viability of ADY without affecting fermentation efficiency and metabolic behaviour. Copyright © 2013 John Wiley & Sons, Ltd.
- University of Basilicata Italy
- Universitat Rovira i Virgili Spain
Microbial Viability, Saccharomyces cerevisiae Proteins, Stress, Physiological, Fermentation, Wine, Saccharomyces cerevisiae, Desiccation
Microbial Viability, Saccharomyces cerevisiae Proteins, Stress, Physiological, Fermentation, Wine, Saccharomyces cerevisiae, Desiccation
4 Research products, page 1 of 1
- 2012IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).12 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
