Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Stem Cellsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cells
Article . 2015 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Stem Cells
Article
Data sources: UnpayWall
versions View all 2 versions

Activated K-Ras, but Not H-Ras or N-Ras, Regulates Brain Neural Stem Cell Proliferation in a Raf/Rb-Dependent Manner

Authors: Kevin M. Haigis; David H. Gutmann; R. Hugh F. Bender;

Activated K-Ras, but Not H-Ras or N-Ras, Regulates Brain Neural Stem Cell Proliferation in a Raf/Rb-Dependent Manner

Abstract

AbstractNeural stem cells (NSCs) give rise to all the major cell types in the brain, including neurons, oligodendrocytes, and astrocytes. However, the intracellular signaling pathways that govern brain NSC proliferation and differentiation have been incompletely characterized to date. Since some neurodevelopmental brain disorders (Costello syndrome and Noonan syndrome) are caused by germline activating mutations in the RAS genes, Ras small GTPases are likely critical regulators of brain NSC function. In the mammalian brain, Ras exists as three distinct molecules (H-Ras, K-Ras, and N-Ras), each with different subcellular localizations, downstream signaling effectors, and biological effects. Leveraging a novel series of conditional-activated Ras molecule-expressing genetically engineered mouse strains, we demonstrate that activated K-Ras, but not H-Ras or N-Ras, expression increases brain NSC growth in a Raf-dependent, but Mek-independent, manner. Moreover, we show that activated K-Ras regulation of brain NSC proliferation requires Raf binding and suppression of retinoblastoma (Rb) function. Collectively, these observations establish tissue-specific differences in activated Ras molecule regulation of brain cell growth that operate through a noncanonical mechanism. Stem Cells 2015;33:1998–2010

Keywords

Mice, Neural Stem Cells, Cell Cycle, ras Proteins, Animals, Brain, Cell Differentiation, Retinoblastoma Protein, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Average
Top 10%
hybrid