Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Pest Management Scie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Pest Management Science
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Mechanism of enhanced sensitivity of mutated β‐adrenergic‐like octopamine receptor to amitraz in honeybee Apis mellifera: An insight from MD simulations

Authors: Mengrong Li; Yiqiong Bao; Ran Xu; Xiaoxiao Zhang; Honggui La; Jingjing Guo;

Mechanism of enhanced sensitivity of mutated β‐adrenergic‐like octopamine receptor to amitraz in honeybee Apis mellifera: An insight from MD simulations

Abstract

AbstractBACKGROUNDAmitraz is one of the critical acaricides/insecticides for effective control of pest infestation of Varroa destructor mite, a devastating parasite of Apis mellifera, because of its low toxicity to honeybees. Previous assays verified that a typical G protein‐coupled receptor, β‐adrenergic‐like octopamine receptor (Octβ2R), is the unique target of amitraz, but the honeybee Octβ2R resists to amitraz. However, the underlying molecular mechanism of the enhanced sensitivity or toxicity of amitraz to mutated honeybee Octβ2RE208V/I335T/I350V is not fully understood. Here, molecular dynamics simulations are employed to explore the implied mechanism of the enhanced sensitivity to amitraz in mutant honeybee Octβ2R.RESULTSWe found that amitraz binding stabilized the structure of Octβ2R, particularly the intracellular loop 3 associated with the Octβ2R signaling. Then, it was further demonstrated that both mutations and ligand binding resulted in a more rigid and compact amitraz binding site, as well as the outward movement of the transmembrane helix 6, which was a prerequisite for G protein coupling and activation. Moreover, mutations were found to promote the binding between Octβ2R and amitraz. Finally, community analysis illuminated that mutations and amitraz strengthened the residue–residue communication within the transmembrane domain, which might facilitate the allosteric signal propagation and activation of Octβ2R.CONCLUSIONOur results unveiled structural determinants of improved sensitivity in the Octβ2R‐amitraz complex and may contribute to further structure‐based drug design for safer and less toxic selective insecticides. © 2022 Society of Chemical Industry.

Related Organizations
Keywords

Insecticides, Adrenergic Agents, Varroidae, Animals, Bees

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%