Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Protein Sciencearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Protein Science
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
Protein Science
Article . 2022
versions View all 3 versions

Innovation and tinkering in the evolution of oxidases

Authors: Jagoda Jabłońska; Dan S. Tawfik;
Abstract

AbstractAlthough molecular oxygen is a relative newcomer to the biosphere, it has had a profound impact on metabolism. About 700 oxygen‐dependent enzymatic reactions are known, the vast majority of which emerged only after the appearance of oxygen in the biosphere, circa 3 billion years ago. Oxygen was a major driving force for evolutionary innovation—~60% of all known oxygen‐dependent enzyme families emerged as such; that is, the founding ancestor was an O2‐dependent enzyme. The other 40% seem to have diverged by tinkering from pre‐existing proteins whose function was not related to oxygen. Here, we focus on the latter. We describe transitions from various enzyme classes, as well as from non‐enzymatic proteins, and we explore these transitions in terms of catalytic chemistry, metabolism, and protein structure. These transitions vary from subtle ones, such as simply repurposing oxidoreductases by replacing an electron acceptor such as NAD by O2, to drastic changes in reaction mechanism, such as turning carboxylases and hydrolases into oxidases. The latter is more common and can occur with strikingly minor changes, for example, only one mutation in the active site. We further suggest that engineering enzymes to harness the extraordinary reactivity of oxygen may yield higher catabolic power and versatility.

Related Organizations
Keywords

Oxygen, Catalytic Domain, Reviews, Oxidoreductases, Catalysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Green
hybrid