Structures of glyceraldehyde 3‐phosphate dehydrogenase in Neisseria gonorrhoeae and Chlamydia trachomatis
Structures of glyceraldehyde 3‐phosphate dehydrogenase in Neisseria gonorrhoeae and Chlamydia trachomatis
AbstractNeisseria gonorrhoeae (Ng) and Chlamydia trachomatis (Ct) are the most commonly reported sexually transmitted bacteria worldwide and usually present as co‐infections. Increasing resistance of Ng to currently recommended dual therapy of azithromycin and ceftriaxone presents therapeutic challenges for syndromic management of Ng‐Ct co‐infections. Development of a safe, effective, and inexpensive dual therapy for Ng‐Ct co‐infections is an effective strategy for the global control and prevention of these two most prevalent bacterial sexually transmitted infections. Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) is a validated drug target with two approved drugs for indications other than antibacterials. Nonetheless, any new drugs targeting GAPDH in Ng and Ct must be specific inhibitors of bacterial GAPDH that do not inhibit human GAPDH, and structural information of Ng and Ct GAPDH will aid in finding such selective inhibitors. Here, we report the X‐ray crystal structures of Ng and Ct GAPDH. Analysis of the structures demonstrates significant differences in amino acid residues in the active sites of human GAPDH from those of the two bacterial enzymes suggesting design of compounds to selectively inhibit Ng and Ct is possible. We also describe an efficient in vitro assay of recombinant GAPDH enzyme activity amenable to high‐throughput drug screening to aid in identifying inhibitory compounds and begin to address selectivity.
- University of Washington, Department of Biochemistry United States
- Seattle Children's Research Institute United States
- UCB Pharma (Belgium) Belgium
- University of Mary United States
- University of Washington United States
Models, Molecular, Dose-Response Relationship, Drug, Drug Evaluation, Preclinical, Glyceraldehyde-3-Phosphate Dehydrogenases, Chlamydia trachomatis, Crystallography, X-Ray, Neisseria gonorrhoeae, Recombinant Proteins, Structure-Activity Relationship, Humans, Enzyme Inhibitors
Models, Molecular, Dose-Response Relationship, Drug, Drug Evaluation, Preclinical, Glyceraldehyde-3-Phosphate Dehydrogenases, Chlamydia trachomatis, Crystallography, X-Ray, Neisseria gonorrhoeae, Recombinant Proteins, Structure-Activity Relationship, Humans, Enzyme Inhibitors
11 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2021IsRelatedTo
- 2017IsRelatedTo
- 2019IsRelatedTo
- 2019IsSupplementTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
