Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Microsurgeryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Microsurgery
Article . 2014 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
Microsurgery
Article . 2016
versions View all 2 versions

Simulated surgery and cutting guides enhance spatial positioning in free fibular mandibular reconstruction

Authors: E, Stirling Craig; Mikell, Yuhasz; Ajul, Shah; Jeffrey, Blumberg; Jeffrey, Salomon; Roger, Lowlicht; Stefano, Fusi; +1 Authors

Simulated surgery and cutting guides enhance spatial positioning in free fibular mandibular reconstruction

Abstract

Introduction: The free fibular flap is the workhorse for mandibular reconstruction. Three‐dimensional (3D) planning, with use of cutting guides and prebent plates, has been introduced. The purpose of this study is to evaluate the interfragmentary gap size and symmetry between conventional freehand preparation versus those using 3D planning. Methods: A retrospective review was performed. Conventional free form and 3D planned fibular reconstructions performed by the senior authors at a single institution were included. Reconstructions were further subdivided into “body only” and “complex.” Demographic and intraoperative data were collected. Postoperative CT scans were analyzed using Materialize software. Interfragmentary gap distances (mm) and symmetry (degrees) were assessed. Results: Nineteen fibular reconstructions met inclusion criteria, ten conventional free form, and nine 3D planned reconstructions. Interfibular gaps measured 0.36 ± 0.50 mm in the 3D group versus 1.88 ± 1.09 mm in the non‐3D group (P = 0.004). Overall symmetry (a ratio between right and left angles) measured versus 1.027 ± 0.08 in the 3D‐planned versus 1.024 ± 0.09 in the non‐3D group in (P = 0.944). Within only mandibular body reconstructions, symmetry was similar between the two techniques: 1.05 ± 0.12 in the 3D group versus 0.97 ± 0.05 in the non‐3D group (P = 0.295). Conclusions: 3D planning lessens interfibular gap dimensions and may enhance axial symmetry. Space between native mandible and fibula is not appreciably altered using planning. Future efforts will focus on the accuracy and reproducibility of the 3D planned to actual results as well as clinical significance and efficiency benefits. © 2014 Wiley Periodicals, Inc. Microsurgery 35:29–33, 2015.

Related Organizations
Keywords

Adult, Aged, 80 and over, Male, Bone Transplantation, Adolescent, Middle Aged, Young Adult, Imaging, Three-Dimensional, Surgery, Computer-Assisted, Tissue and Organ Harvesting, Computer-Aided Design, Humans, Computer Simulation, Female, Mandibular Reconstruction, Tomography, X-Ray Computed, Bone Plates, Aged, Retrospective Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Top 10%
Top 10%
Top 10%