Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Liver Transplantatio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Liver Transplantation
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Rho-kinase–dependent pathway mediates the hepatoprotective effects of sorafenib against ischemia/reperfusion liver injury in rats with nonalcoholic steatohepatitis

Authors: Han-Chieh Lin; Han-Chieh Lin; Yi-Chen Yeh; Yi-Chen Yeh; Ying-Ying Yang; Ying-Ying Yang; Tzung-Yan Lee; +5 Authors

Rho-kinase–dependent pathway mediates the hepatoprotective effects of sorafenib against ischemia/reperfusion liver injury in rats with nonalcoholic steatohepatitis

Abstract

During liver transplantation, nonalcoholic steatohepatitis (NASH) aggravates ischemia/reperfusion (IR) injury by activating various kinases and subsequently releasing cytokines and chemokines. Nonetheless, the effect of the multikinase inhibitor sorafenib on IR liver injury in rats with NASH has never been explored. Our study was designed to determine this effect and associated mechanisms in NASH rats. Sorafenib was acutely administered to NASH rats with IR liver injury that were or were not chronically pretreated with the Rho-kinase–specific inhibitor fasudil. Then, the following were evaluated: mean arterial pressure; hepatic blood flow and microcirculatory dysfunction; hepatic inflammation (serum alanine aminotransferase); necrosis; apoptosis; leukocyte infiltration; CD45 staining; caspase levels and DNA fragmentation; various serum and hepatic cytokines; and proteins and genes of the Raf/mitogen-activated protein–extracellular signal-regulated kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase, and apoptosis pathways. In NASH rats with IR liver injury, hepatic inflammation, necrosis, apoptosis, leukocyte infiltration, and microcirculatory dysfunction were significantly attenuated by the acute administration of sorafenib through the inhibition of the hepatic release of macrophage inflammatory protein 2, keratinocyte chemoattractant, granulocyte-monocyte colony-stimulating factor, and hepatic caspase-3 and caspase-9 as well as DNA fragmentation. Furthermore, there was decreased expression of p-Raf1 (where p indicates the phosphorylated form), p-MEK1/2, p-ERK1/2, p-Rho-kinase, B cell lymphoma 2–associated death promoter, and B cell lymphoma 2–associated X protein at the protein and messenger RNA levels. Notably, the aforementioned beneficial effects of sorafenib were significantly abolished by chronic pretreatment with the Rho-kinase–specific inhibitor fasudil. This study demonstrated that the multikinase inhibitor sorafenib protects NASH rats from IR injury by interfering with the inflammation, necrotic, and apoptotic responses causing leukocyte-dependent hepatic microcirculatory dysfunction. The hepatoprotective effects of sorafenib seem to work through the inhibition of the Rho-kinase–dependent Raf/MEK/ERK pathway, which is up-regulated during IR injury in the livers of NASH rats. Liver Transpl 18:1371–1383, 2012. © 2012 AASLD.

Keywords

Inflammation, Male, Niacinamide, MAP Kinase Signaling System, Phenylurea Compounds, Hemodynamics, Apoptosis, Sorafenib, Gene Expression Regulation, Enzymologic, Rats, Fatty Liver, Rats, Sprague-Dawley, Disease Models, Animal, Necrosis, Liver, Non-alcoholic Fatty Liver Disease, Reperfusion Injury, Animals, RNA, Messenger, Protein Kinase Inhibitors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Average
bronze