Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Medical V...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Medical Virology
Article . 2021 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Targeting SARS‐CoV‐2 viral proteases as a therapeutic strategy to treat COVID‐19

Authors: Anirudhan, Varada; Lee, Hyun; Cheng, Han; Cooper, Laura; Rong, Lijun;

Targeting SARS‐CoV‐2 viral proteases as a therapeutic strategy to treat COVID‐19

Abstract

AbstractThe 21st century has witnessed three outbreaks of coronavirus (CoVs) infections caused by severe acute respiratory syndrome (SARS)‐CoV, Middle East respiratory syndrome (MERS)‐CoV, and SARS‐CoV‐2. Coronavirus disease 2019 (COVID‐19), caused by SARS‐CoV‐2, spreads rapidly and since the discovery of the first COVID‐19 infection in December 2019, has caused 1.2 million deaths worldwide and 226,777 deaths in the United States alone. The high amino acid similarity between SARS‐CoV and SARS‐CoV‐2 viral proteins supports testing therapeutic molecules that were designed to treat SARS infections during the 2003 epidemic. In this review, we provide information on possible COVID‐19 treatment strategies that act via inhibition of the two essential proteins of the virus, 3C‐like protease (3CLpro) or papain‐like protease (PLpro).

Keywords

SARS-CoV-2, Viral Proteases, COVID-19, Coronavirus Papain-Like Proteases, Viral Nonstructural Proteins, Antiviral Agents, COVID-19 Drug Treatment, Infectious Diseases, Virology, Middle East Respiratory Syndrome Coronavirus, Humans, Protease Inhibitors, Coronavirus 3C Proteases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    53
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
53
Top 1%
Top 10%
Top 1%
hybrid