Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Cellular ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Cellular Biochemistry
Article . 2010 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Glypican 3 binds to GLUT1 and decreases glucose transport activity in hepatocellular carcinoma cells

Authors: Hye-Sim, Cho; Jung-Mo, Ahn; Ho-Jae, Han; Je-Yoel, Cho;

Glypican 3 binds to GLUT1 and decreases glucose transport activity in hepatocellular carcinoma cells

Abstract

AbstractGlypican 3 (GPC3), a member of heparin sulfate proteoglycans, is attached to the cell surface by a glycosylphosphatidylinositol anchor and is reported to be overexpressed in liver cancers. In order to identify GPC3 binding proteins on the cell surface, we constructed a cDNA containing the C‐terminal cell surface‐attached form of GPC3 (GPC3c) in a baculoviral vector. The GPC3c bait protein was produced by expressing the construct in Sf21 insect cells and double purified using a His column and Flag immunoprecipitation. Purified GPC3c was used to uncover GPC3c‐interacting proteins. Using an LC–MS/MS proteomics strategy, we identified glucose transporter 1 (GLUT1) as a novel GPC3 interacting protein from the HepG2 hepatoma cell lysates. The interaction was confirmed by immunoprecipitation (IP)–WB analysis and surface plasmon resonance (SPR). SPR result showed the interaction of GLUT1 to GPC3c with equilibrium dissociation constants (KD) of 1.61 nM. Moreover, both incubation with GPC3c protein and transfection of Gpc3c cDNA into HepG2 cells resulted in reduced glucose uptake activity. Our results indicate that GPC3 plays a role in glucose transport by interacting with GLUT1. J. Cell. Biochem. 111: 1252–1259, 2010. © 2010 Wiley‐Liss, Inc.

Related Organizations
Keywords

Proteomics, Glucose Transporter Type 1, Carcinoma, Hepatocellular, Insecta, Liver Neoplasms, Biological Transport, Hep G2 Cells, Transfection, Cell Line, Glucose, Glypicans, Protein Interaction Mapping, Animals, Humans, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average
Related to Research communities
Cancer Research