Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: A unified model of the mechanisms of initiation of skeletal calcification
Loss of skeletal mineralization by the simultaneous ablation of PHOSPHO1 and alkaline phosphatase function: A unified model of the mechanisms of initiation of skeletal calcification
Abstract Endochondral ossification is a carefully orchestrated process mediated by promoters and inhibitors of mineralization. Phosphatases are implicated, but their identities and functions remain unclear. Alkaline phosphatase (TNAP) plays a crucial role promoting mineralization of the extracellular matrix by restricting the concentration of the calcification inhibitor inorganic pyrophosphate (PPi). Mutations in the TNAP gene cause hypophosphatasia, a heritable form of rickets and osteomalacia. Here we show that PHOSPHO1, a phosphatase with specificity for phosphoethanolamine and phosphocholine, plays a functional role in the initiation of calcification and that ablation of PHOSPHO1 and TNAP function prevents skeletal mineralization. Phospho1−/− mice display growth plate abnormalities, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis in early life. Primary cultures of Phospho1−/− tibial growth plate chondrocytes and chondrocyte-derived matrix vesicles (MVs) show reduced mineralizing ability, and plasma samples from Phospho1−/− mice show reduced levels of TNAP and elevated plasma PPi concentrations. However, transgenic overexpression of TNAP does not correct the bone phenotype in Phospho1−/− mice despite normalization of their plasma PPi levels. In contrast, double ablation of PHOSPHO1 and TNAP function leads to the complete absence of skeletal mineralization and perinatal lethality. We conclude that PHOSPHO1 has a nonredundant functional role during endochondral ossification, and based on these data and a review of the current literature, we propose an inclusive model of skeletal calcification that involves intravesicular PHOSPHO1 function and Pi influx into MVs in the initiation of mineralization and the functions of TNAP, nucleotide pyrophosphatase phosphodiesterase-1, and collagen in the extravesicular progression of mineralization. © 2011 American Society for Bone and Mineral Research.
- University of Edinburgh United Kingdom
- Universtity of Edinburgh United Kingdom
- Sanford Burnham Prebys Medical Discovery Institute United States
- ROYAL INSTITUTION FOR THE ADVANCEMENT OF LEARNING MCGILL UNIVERSITY Canada
- McGill University Canada
Mice, Inbred C3H, Phosphoric Diester Hydrolases, Mice, Transgenic, Alkaline Phosphatase, Bone and Bones, Phosphoric Monoester Hydrolases, Extracellular Matrix, Diphosphates, Mice, Inbred C57BL, Mice, Calcification, Physiologic, Bone Density, Mutation, Animals, Original Article, Collagen, Pyrophosphatases
Mice, Inbred C3H, Phosphoric Diester Hydrolases, Mice, Transgenic, Alkaline Phosphatase, Bone and Bones, Phosphoric Monoester Hydrolases, Extracellular Matrix, Diphosphates, Mice, Inbred C57BL, Mice, Calcification, Physiologic, Bone Density, Mutation, Animals, Original Article, Collagen, Pyrophosphatases
18 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2014IsAmongTopNSimilarDocuments
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).208 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
