<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Regulatory elements controlling expression of the Drosophila homeotic gene fork head.

Regulatory elements controlling expression of the Drosophila homeotic gene fork head.
The region-specific homeotic gene fork head (fkh) is expressed and required in a variety of tissues of the developing Drosophila embryo. In order to identify the cis regulatory elements directing the complex spatio-temporal expression pattern of fkh, we have studied the subpatterns directed by defined fragments of fkh genomic DNA. These experiments enabled us to distinguish separate regulatory elements specific for the different expression domains of fkh. In addition, our analysis revealed several unexpected features such as the redundancy of regulatory elements and the overlap of regulatory elements with the transcribed regions of other genes. Moreover, the separation of normally contiguous elements effecting expression in the posterior terminal fkh domain appears to lead to novel expression domains which do not correspond to known developmental units in the embryo.
Gene Expression Regulation, Genes, Regulator, Mutation, Genes, Homeobox, Animals, Drosophila, DNA, Cloning, Molecular, Alleles, Plasmids
Gene Expression Regulation, Genes, Regulator, Mutation, Genes, Homeobox, Animals, Drosophila, DNA, Cloning, Molecular, Alleles, Plasmids
8 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).41 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%