Antibody targeting of HER2/HER3 signaling overcomes heregulin‐induced resistance to PI3K inhibition in prostate cancer
doi: 10.1002/ijc.29378
pmid: 25471734
Antibody targeting of HER2/HER3 signaling overcomes heregulin‐induced resistance to PI3K inhibition in prostate cancer
Dysregulated expression and/or mutations of the various components of the phosphoinositide 3‐kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER‐targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC‐0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin‐mediated resistance to GDC‐0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti‐HER2/HER3 bispecific antibody or a mixture of anti‐HER2 and anti‐HER3 antibodies restores sensitivity to GDC‐0941 in heregulin‐treated androgen‐dependent and ‐independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer.
- The University of Texas System United States
- University of Southampton United Kingdom
- Texas A&M Health Science Center United States
- Southwestern University Philippines
- Texas A&M University United States
Male, Indazoles, Receptor, ErbB-3, Receptor, ErbB-2, Neuregulin-1, Immunoblotting, 610, Antibodies, Monoclonal, Humanized, Antibodies, Phosphatidylinositol 3-Kinases, Cell Line, Tumor, Humans, Cell Proliferation, Phosphoinositide-3 Kinase Inhibitors, Sulfonamides, Dose-Response Relationship, Drug, Prostatic Neoplasms, Drug Synergism, Microscopy, Fluorescence, Drug Resistance, Neoplasm, Signal Transduction
Male, Indazoles, Receptor, ErbB-3, Receptor, ErbB-2, Neuregulin-1, Immunoblotting, 610, Antibodies, Monoclonal, Humanized, Antibodies, Phosphatidylinositol 3-Kinases, Cell Line, Tumor, Humans, Cell Proliferation, Phosphoinositide-3 Kinase Inhibitors, Sulfonamides, Dose-Response Relationship, Drug, Prostatic Neoplasms, Drug Synergism, Microscopy, Fluorescence, Drug Resistance, Neoplasm, Signal Transduction
31 Research products, page 1 of 4
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
- 3
- 4
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
