Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Cancer
Article . 2009 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
https://dx.doi.org/10.5167/uzh...
Other literature type . 2009
Data sources: Datacite
versions View all 5 versions

Modulation of TGF‐β activity by latent TGF‐β‐binding protein 1 in human malignant glioma cells

Authors: Tritschler, I; Gramatzki, D; Capper, D; Mittelbronn, M; Meyermann, R; Saharinen, J; Wick, W; +2 Authors

Modulation of TGF‐β activity by latent TGF‐β‐binding protein 1 in human malignant glioma cells

Abstract

AbstractHigh biological activity of the transforming growth factor (TGF)‐β‐Smad pathway characterizes the malignant phenotype of malignant gliomas and confers poor prognosis to glioma patients. Accordingly, TGF‐β has become a novel target for the experimental treatment of these tumors. TGF‐β is processed by furin‐like proteases (FLP) and secreted from cells in a latent complex with its processed propeptide, the latency‐associated peptide (LAP). Latent TGF‐β‐binding protein 1 (LTBP‐1) covalently binds to this small latent TGF‐β complex (SLC) and regulates its function, presumably via interaction with the extracellular matrix (ECM). We report here that the levels of LTBP‐1 protein in vivo increase with the grade of malignancy in gliomas. LTBP‐1 is associated with the ECM as well as secreted into the medium in cultured malignant glioma cells. The release of LTBP‐1 into the medium is decreased by the inhibition of FLP activity. Gene‐transfer mediated overexpression of LTBP‐1 in glioma cell lines results in an increase inTGF‐β activity. Accordingly, Smad2 phosphorylation as an intracellular marker of TGF‐β activity is enhanced. Conversely, LTBP‐1 gene silencing reduces TGF‐β activity and Smad2 phosphorylation without affecting TGF‐β protein levels. Collectively, we identify LTBP‐1 as an important modulator of TGF‐β activation in glioma cells, which may contribute to the malignant phenotype of these tumors. © 2009 UICC

Keywords

Cancer Research, Immunoblotting, 610 Medicine & health, Smad2 Protein, Astrocytoma, Polymerase Chain Reaction, Transforming Growth Factor beta, Cell Line, Tumor, Humans, 1306 Cancer Research, Phosphorylation, Cell Proliferation, Oligonucleotide Array Sequence Analysis, Brain Neoplasms, Glioma, Immunohistochemistry, 10040 Clinic for Neurology, Extracellular Matrix, Up-Regulation, Gene Expression Regulation, Neoplastic, Phenotype, Oncology, Latent TGF-beta Binding Proteins, 2730 Oncology, Glioblastoma, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Top 10%
Top 10%
Top 10%
Green
bronze