Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental DNAarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental DNA
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental DNA
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2023 . Peer-reviewed
Data sources: DIGITAL.CSIC
versions View all 4 versions

Nanopore short‐read sequencing: A quick, cost‐effective and accurate method for DNA metabarcoding

Authors: Aimee L. van der Reis; Lynnath E. Beckley; M. Pilar Olivar; Andrew G. Jeffs;

Nanopore short‐read sequencing: A quick, cost‐effective and accurate method for DNA metabarcoding

Abstract

AbstractDietary and predator–prey studies are more frequently relying on DNA metabarcoding methods, typically achieving results that have a better taxonomic resolution (e.g., species‐level) than previous methods. With the continuous advancement in sequencing technology, what was previously accessible only as a large, fixed structure in a laboratory, which had a limited number of users, has now advanced to a small and readily usable device. In this study, we used the gut (content and lining) from juvenile lanternfish (Hygophum) specimens to compare the short‐read sequencing capability of the portable Nanopore MinION with the Illumina MiSeq. Primers common in dietary DNA metabarcoding work (COI “Leray primers” and 18S rRNA V4 “Zhan primers”) were used, with an additional comparison of cost‐effective COI “Lobo primers” (targeting the same COI fragment) for the proficiency in species detection of a broad range of taxa. Our results indicate high congruency between sequencing machines for, not only taxonomic assignments, but also relative read abundance of the main dietary items. We also identified that Nanopore sequencing is more cost‐effective. The Lobo primers are comparable to that of Leray, but substantially reduce the primer set price without compromising detection of taxa. Using both COI and 18S broadened the taxonomic scope, providing greater prey detection. Overall, this preliminary study was successful in creating a foundation for future dietary work involving larvae and transformation stage fishes whereby the content of the gut need not be separated from the gut lining to detect prey. The Hygophum diet detected here aligns with previous research that suggests the main dietary items to be calanoid copepods, but using molecular methods, soft prey was more readily identified compared to studies using visual methods of identification of dietary items. Overall, this study found that Nanopore sequencing is suitable for short‐read DNA metabarcoding and can provide rapid access to sequencing results.

Country
Spain
Keywords

Nanopore, QR100-130, Lanternfish, DNA metabarcoding, Environmental sciences, Microbial ecology, COI, 18S rRNA, Illumina, diet analysis, Diet analysis, GE1-350, Hygophum, http://metadata.un.org/sdg/14, Conserve and sustainably use the oceans, seas and marine resources for sustainable development

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 251
    download downloads 523
  • 251
    views
    523
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
30
Top 10%
Average
Top 10%
251
523
Green
gold