Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Research@WUR
Article . 2015
Data sources: Research@WUR
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology Progress
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions

Influence of protein and carbohydrate contents of soy protein hydrolysates on cell density and IgG production in animal cell cultures

Authors: Gupta, A.J.; Wierenga, P.A.; Gruppen, H.; Boots, J.W.;

Influence of protein and carbohydrate contents of soy protein hydrolysates on cell density and IgG production in animal cell cultures

Abstract

The variety of compounds present in chemically defined media as well as media supplements makes it difficult to use a mechanistic approach to study the effect of supplement composition on culture functionality. Typical supplements, such as soy protein hydrolysates contain peptides, amino acids, carbohydrates, isoflavones, and saponins. To study the relative contribution of these compound classes, a set of hydrolysates were produced, containing 58‐83% proteinaceous material and 5‐21% carbohydrates. While the content of the different compounds classes varied, the composition (e.g., peptide profiles, carbohydrate composition) did not vary in hydrolysates. The hydrolysates were supplemented to a chemically defined medium in cell culture, based on equal weight and on equal protein levels. The latter showed that an increase in the carbohydrate concentration significantly (P value < 0.004) increased integral viable cell density (IVCD) (R = 0.7) and decreased total IgG (R = −0.7) and specific IgG production (R = −0.9). The extrapolation of effects of protein concentration showed that an increase in protein concentration increased total and specific IgG production and suppressed IVCD. In addition to proteins and carbohydrates, the functionality of soy protein hydrolysates may be modulated by the presence of other minor compounds. In the current study, the large differences in the balance between total proteins and total carbohydrates in the supplemented media seem to be a main factor influencing the balance between the viable cell density, total IgG, and specific IgG production. © 2015 American Institute of Chemical Engineers Biotechnol. Prog. , 31:1396–1405, 2015

Keywords

Soybean meal, Protein Hydrolysates, Hydrolysis, Carbohydrates, CHO cells, Cell Count, CHO Cells, Saponins, Isoflavones, Cricetulus, Cricetinae, Immunoglobulin G, Soybean Proteins, Animals, Cell culture, Composition

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Average