Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Arthritis & Rheumato...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Arthritis & Rheumatology
Article . 2015 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

The W620 Polymorphism in PTPN22 Disrupts Its Interaction With Peptidylarginine Deiminase Type 4 and Enhances Citrullination and NETosis

Authors: Hui-Hsin Chang; I-Cheng Ho; Anthony P. Nicholas; Nishant Dwivedi;

The W620 Polymorphism in PTPN22 Disrupts Its Interaction With Peptidylarginine Deiminase Type 4 and Enhances Citrullination and NETosis

Abstract

ObjectiveA C‐to‐T single‐nucleotide polymorphism (SNP) located at position 1858 of human protein tyrosine phosphatase PTPN22 complementary DNA carries the highest risk of rheumatoid arthritis (RA) among all non‐HLA genetic variants. This C1858T SNP converts an arginine (R620) to a tryptophan (W620), but it is unclear why it has such a strong impact on RA, a disease characterized by anti–citrullinated protein antibodies. The aim of this study was to test the hypothesis that PTPN22 regulates protein citrullination.MethodsThe level of citrullinated proteins in immune cells was quantified by Western blotting. The physical interaction between PTPN22 and peptidyl arginine deiminase type 4 (PAD‐4), which is one of the enzymes that catalyzes protein citrullination, was examined by coimmunoprecipitation. Neutrophils were collected from healthy donors carrying the C1858T SNP and healthy donors not carrying this SNP. The formation of neutrophil extracellular traps (NETs) was examined by immunocytochemistry.ResultsPTPN22 physically interacted with PAD‐4, and a deficiency in PTPN22 enhanced protein citrullination. This abnormality was reversed by exogenous wild‐type PTPN22 or catalytically dead mutant PTPN22. The R‐to‐W conversion rendered PTPN22 unable to interact with PAD‐4 and suppress citrullination. The C1858T SNP was associated with hypercitrullination in peripheral blood mononuclear cells and a heightened propensity for spontaneous formation of NETs, which is a PAD‐4–dependent process.ConclusionPTPN22 is an inhibitor of PAD‐4 and protein citrullination. This function of PTPN22 is independent of its phosphatase activity but requires R620. Our data not only establish a molecular link between PTPN22 and PAD‐4, but also suggest that the C1858T SNP increases the risk of RA by enhancing protein citrullination and spontaneous formation of NETs.

Keywords

Adult, Male, DNA, Complementary, Hydrolases, Extracellular Traps, Peptides, Cyclic, Polymorphism, Single Nucleotide, Arthritis, Rheumatoid, Mice, Protein-Arginine Deiminase Type 4, Animals, Humans, Aged, Autoantibodies, Mice, Knockout, Protein Tyrosine Phosphatase, Non-Receptor Type 22, Middle Aged, Case-Control Studies, Citrulline, Female

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 1%
Top 10%
Top 1%
bronze