Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Dynami...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 1996 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Developmental Dynamics
Article . 1996 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
versions View all 3 versions

Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis

Authors: Robert Benezra; Yale Jen; Katia Manova;

Expression patterns of Id1, Id2, and Id3 are highly related but distinct from that of Id4 during mouse embryogenesis

Abstract

The murine dominant negative helix-loop-helix (dnHLH) proteins inhibit the activities of bHLH transcription factors in diverse cell lineages (Benezra et al. [1990] Cell 61:49-59; Christy et al [1991] Proc. Natl. Acad. Sci. U.S.A. 88:1815-1819; Sun et al [1991] Mol. Cell Biol. 11: 5603-5611; Riechmann et al. [1994] Nucleic Acids Res. 22:749-755). Currently, there are four members in the dnHLH family, Id1, Id2, Id3, and Id4. In this report, we have performed a detailed comparative in situ hybridization analysis to examine their expression pattern during post-gastrulational mouse development. Id1, 2, and 3 are expressed in multiple tissues, whereas Id4 expression can only be detected in neuronal tissues and in the ventral portion of the epithelium of the developing stomach. The regions where Id1-3 genes are expressed, such as gut, lung, kidney, tooth, whisker, and several glandular structures, are undergoing active morphogenetic activities. The expression patterns of Id1, 2, and 3 overlap in many organs, except in the tissue derived from primitive gut. In the latter, Id1 and Id3 signals are detected in the mesenchyme surrounding the epithelium, whereas Id2 is expressed within the epithelium. The difference in the patterns of expressions of Id2-3 and Id4 suggest that the dominant negative transcriptional activity of these two subclasses of the Id family may have different physiological consequences.

Related Organizations
Keywords

Myocardium, Helix-Loop-Helix Motifs, Gene Expression, Heart, Kidney, Bone and Bones, Epithelium, Mesoderm, Mice, Viscera, Cartilage, Exocrine Glands, Endocrine Glands, Animals, Digestive System, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 10%
Top 1%
Top 10%
bronze