Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL AMUarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL AMU
Conference object . 2022
Data sources: HAL AMU

Quantitative T1D assessment in lipid membranes: Jeener-Broekaert NMR vs. ihMT MRI

Authors: Hertanu, A.; Soustelle, Lucas; de Rochefort, Ludovic; Grélard, Axelle; Dufourc, Erick J.; Alsop, David; Duhamel, Guillaume; +1 Authors

Quantitative T1D assessment in lipid membranes: Jeener-Broekaert NMR vs. ihMT MRI

Abstract

The dipolar order relaxation time (T1D) is a probe of membrane dynamics and microstructure and could serve to further understand the relationship between the myelin membrane integrity and its biological function. In this work, the ability of quantitative inhomogeneous Magnetization Transfer (qihMT) to estimate the several T1D components of a synthetic lipid membrane system, a surrogate for the myelin membrane, was evaluated by comparison with the gold standard method for T1D quantification, the NMR Jeener-Broekaert (JB) sequence.

Country
France
Keywords

[SDV] Life Sciences [q-bio], [SPI] Engineering Sciences [physics], [PHYS] Physics [physics]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Funded by
Related to Research communities