Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CORE (RIOXX-UK Aggre...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/

Mechanisms of segmentation in the American cockroach, periplaneta americana

Authors: Chesebro, John;

Mechanisms of segmentation in the American cockroach, periplaneta americana

Abstract

A fully segmented body and jointed legs are defining characteristics of the Arthropoda (Insecta, Crustacea, Myriapoda, and Chelicerata). The underlying mechanisms involved in achieving these features are not well understood outside of the insect Drosophila melanogaster (fruit fly) – a long germ band organism where segmentation occurs all at once in a syncytial blastoderm. In the more common, ancestral mode of development, short germ band, new segments are added sequentially from the cellular environment of a posteriorly extending growth zone. Segmentation in these organisms may not always be comparable to the “Drosophila paradigm” and, therefore, require further analysis. My thesis will explore the conservation and divergence of the molecular mechanisms of segmentation in a phylogenetically basal, short germ band insect, Periplaneta americana (American cockroach). Presented over three results chapters, I will discuss aspects of cockroach segmentation processes, from the establishment of a posterior organiser and growth zone, to subsequent posterior growth and the formation of new segments. In particular, Chapter III describes how interactions between the Cad/Wnt-dependent posterior organiser and the Notch-segmentation clock control posterior growth and segmentation. Chapter IV encompasses the expression patterns and potential roles for Periplaneta homologues of the pair-rule genes: even-skipped, runt, pairberry, and sloppy-paired throughout embryogenesis, identifying deviations in function between anterior and posterior segmentation processes. New functions for the non-canonical, polycistronic small Open Reading Frame (smORF) gene tarsal-less in body patterning are discussed in Chapter V, along with the conserved roles for tarsal-less, nubbin, Notch, and Delta in leg and development. Elucidation of the networks involved in these processes will help establish putative ancestral gene functions allowing us to gain further insights into the evolution of insect (and arthropod) body segmentation and leg joint formation.

Keywords

QL0463

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green