Loading
All surface and buried infrastructure have a limited safe life and it is vital to evaluate their condition and structural integrity during their service life to avoid potential catastrophic failure due to their deterioration. Accurate assessment of infrastructure's condition is of significant financial and strategic importance and allows better resources planning. The research presented in this proposal offers an innovative solution in the form of a unified framework to assess and evaluate the condition and structural integrity of both underground utility and surface transportation infrastructure, and its surrounding ground, by means of combining physical non-destructive testing and numerical modelling. The physical tests will be used to generate necessary data for the damage detection algorithm. The numerical simulation involves a hybrid back-calculation algorithm based on integration of finite element analysis and a novel evolutionary computing technique. The proposed numerical approach will be able to capture the non-linear and complex behaviour of both the ground and the buried utility and detect damage in infrastructure by characterising reduction in the constitutive properties of the finite element model of the system between two time-separated inferences. The proposed framework in this project will provide sufficient information on mechanical and structural condition of a system and will enable asset managers to make informed decisions with respect to what, where, when and how interventions are required with emphasis on structural stability and integrity of the infrastructure.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::909a3e22535de3f73ea64b8ae8229cfe&type=result"></script>');
-->
</script>