Powered by OpenAIRE graph

Engineered bulk heterojunction inorganic:organic hybrid photovoltaics

Funder: UK Research and InnovationProject code: EP/J016039/1
Funded under: EPSRC Funder Contribution: 99,908 GBP

Engineered bulk heterojunction inorganic:organic hybrid photovoltaics

Description

The case for supporting clean, renewable technologies is strong with UK Government commitments to ensuring 15 % of our energy comes from renewable sources by 2020, this represents a seven fold increase in the market share for renewables in less than a decade. This target can only be achieved by implementing a combination of complementary solutions including biomass, wind, wave and solar. In particular solar energy harvesting has the potential to become competitive, in both economic and performance terms, if current limitations associated with next generation technologies can be overcome. In addition to environmental benefits there is the potential for significant economic development, recent analysis suggests that the entire renewable energy sector could support up to half a million jobs in the UK by 2020. The demand is present, evidenced by the increase in UK PV capacity from 10.9 Mw in 2005 to an estimated 26.5 Mw in 2009. Inorganic-organic hybrid photovoltaic (h-PV) devices are a realistic prospect for the long-term development of entirely solution processable, scalable devices on rigid and flexible substrates. The pairing of a metal oxide (TiO2, ZnO) with a conjugated polymer to form a hybrid device is an attractive combination of materials. For example, ZnO provides efficient electron mobility, effective light-scattering, is of low cost and can be formed in a wide variety of (nano) structures from aqueous solution. The absorbing, hole-transporting conjugated polymers, such as poly(3-hexylthiphene)(P3HT), support a wide variety of processing routes and exhibit some of the best charge transport of all organic semiconductors. However progress made towards realising such h-PV technologies has been slow. Reported power conversion efficiency (PCE) values are typically < 1%, with some more recent publications reporting 2%. This compares with reported efficiencies of > 8% for commercial organic-PVs. The nanostructured devices that will be prepared in this program will provide controlled bicontinuous networks for charge, and importantly will allow control of the polymer morphology - a parameter that has received little attention in h-PVs - although it is known to strongly influence exciton generation, free carrier transport and light absorption. This unique combination of materials and processing strategies presents an exciting opportunity for the development of h-PV devices that can overcome the current performance limitations by allowing control of the structural and morphological properties of the device not possible with other material combinations or processing techniques.

Data Management Plans
Powered by OpenAIRE graph

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7a32533d09590a15638f84b4c9bfec49&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down