Powered by OpenAIRE graph

EPSRC Centre for Doctoral Training in Materials for Demanding Environments

Funder: UK Research and InnovationProject code: EP/L01680X/1
Funded under: EPSRC Funder Contribution: 4,291,880 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
47
97

EPSRC Centre for Doctoral Training in Materials for Demanding Environments

Description

The EPSRC Centre for Doctoral training in Materials for Demanding Environments will primarily address the Structural Integrity and Materials Behaviour priority area, and span into the Materials Technologies area. The CDT will target the oil & gas, aerospace and nuclear power industrial sectors, as well as the Defence sector. Research and training will be undertaken on metals and alloys, composites, coatings and ceramics and the focus will be on understanding the mechanisms of material degradation. The Centre will instil graduates with an understanding of structural integrity assessment methodologies with the aim to designing and manufacturing materials that last longer within a framework that enables safe lifetimes to be accurately predicted. A CDT is needed as the capability of current materials to withstand demanding environments is major constraint across a number of sectors; failure by corrosion alone is estimated to cost over $2.2 Trillion globally each year. Further understanding of the mechanisms of failure, and how these mechanisms interact with one another, would enable the safe and timely withdrawal of materials later in their life. New advanced materials and coatings, with quantifiable lifetimes, are integral to the UK's energy and manufacturing companies. Such technology will be vital in harvesting oil & gas safely from increasingly inaccessible reservoirs under high pressures, temperatures and sour environments. Novel, more cost-effective aero-engine materials are required to withstand extremely oxidative high temperature environments, leading to aircraft with increased fuel efficiency, reduced emissions, and longer maintenance cycles. New lightweight alloys, ceramics and composites could deliver fuel efficiency in the aerospace and automotive sectors, and benefit personal and vehicle armour for blast protection. In the nuclear sector, new light water power plants demand tolerance to neutron radiation for extended durations, and Generation IV plants will need to withstand high operating temperatures. It is vital to think beyond traditional disciplines, linking aspects of metallurgy, materials chemistry, non-destructive evaluation, computational modelling and environmental sciences. Research must involve not just the design and manufacturing of new materials, but the understanding of how to test and observe materials behaviour in demanding service environments, and to develop sophisticated models for materials performance and component lifetime assessment. The training must also include aspects of validation, risk assessment and sustainability.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 47
    download downloads 97
  • 47
    views
    97
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6d515bc0894c06d94140d9a1d3d47f62&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down