Powered by OpenAIRE graph

21EBTA: EB-AI Consortium for Bioengineered Cells & Systems (AI-4-EB)

Funder: UK Research and InnovationProject code: BB/W013770/1
Funded under: BBSRC Funder Contribution: 1,259,580 GBP
visibility
download
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
44
96

21EBTA: EB-AI Consortium for Bioengineered Cells & Systems (AI-4-EB)

Description

Our vision for this Transition Award is to leverage and combine key emerging technologies in Artificial Intelligence (AI) and Engineering Biology (EB) to enable and pioneer a new era of world-leading advances that will directly contribute to the objectives of the National Engineering Biology Programme. Realisation of the benefits of Engineering Biology technologies is predicated on our ability to increase our capability for predictive design and optimisation of engineered biosystems across different biological scales. Such a scaled approach to Engineering Biology would serve to significantly accelerate translation of scientific research and innovation into applications of wide commercial and societal impact. Synthetic Biology has developed rapidly over the past decade. We now have the core tools and capabilities required to modify and engineer living systems. However, our ability to predictably design new biological systems is still limited, due to the complexity, noise, and context dependence inherent to biology. To achieve the full capability of Engineering Biology, we require a change in capacity and scope. This requires lab automation to deliver high-throughput workflows. With this comes the challenge of managing and utilising the data-rich environment of biology that has emerged from recent advances in data collection capabilities, which include high-throughput genomics, transcriptomics, and metabolomics. However, such approaches produce datasets that are too large for direct human interpretation. There is thus a need to develop deep statistical learning and inference methods to uncover patterns and correlations within these data. On the other hand, steady improvements in computing power, combined with recent advances in data and computer sciences have fuelled a new era of Artificial Intelligence (AI)-driven methods and discoveries that are progressively permeating almost all sectors and industries. However, the type of data we can gather from biological systems does not match the requirements for off-the-shelf ML/AI methods and tools that are currently available. This calls for the development of new bespoke AI/ML methods adapted to the specific features of biological measurement data. AI approaches have the potential to both learn from complex data and, when coupled to appropriate systems design and engineering methods, to provide the predictive power required for reliable engineering of biological systems with desired functions. As the field develops, there is thus an opportunity to strategically focus on data-centric approaches and AI-enabled methods that are appropriate to the challenges and themes of the National Engineering Biology Programme. Closing the Design-Build-Test-Learn loop using AI to direct the "learn" and "design" phases will provide a radical intervention that fundamentally changes the way that we design, optimise and build biological systems. Through this AI-4-EB Transition Award we will build a network of inter-connected and inter-disciplinary researchers to both develop and apply next-generation AI technologies to biological problems. This will be achieved through a combination of leading-light inter-disciplinary pilot projects for application-driven research, meetings to build the scientific community, and sandpits supported by seed funding to generate novel ideas and new collaborations around AI approaches for real-world use. We will also develop an RRI strategy to address the complex issues arising at the confluence of these two critical and transformative technologies. Overall, AI-4-EB will provide the necessary step-change for the analysis of large and heterogeneous biological data sets, and for AI-based design and optimisation of biological systems with sufficient predictive power to accelerate Engineering Biology.

Data Management Plans
  • OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 44
    download downloads 96
  • 44
    views
    96
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::55b3d6cb86b0e92504087613ba0467e5&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down