Powered by OpenAIRE graph

Evaluation of novel implant fixation technology with a new pre-clinical testing method

Funder: UK Research and InnovationProject code: EP/S022546/1
Funded under: EPSRC Funder Contribution: 428,390 GBP

Evaluation of novel implant fixation technology with a new pre-clinical testing method

Description

Every year in the UK, more than 300,000 hip, knee, shoulder, ankle or elbow devices are implanted into patients for the treatment of orthopaedic pain, disease and trauma. Secure fixation of these implants in bone is essential for the procedure's success, yet is challenging to achieve as bone is a living tissue that adapts and changes postoperatively. Researchers and industry strive to develop new technologies to improve fixation, with many aiming to take advantage of bone's living response by enabling it to grow into the implant. The design intent of these new technologies is always well-meaning, but to protect patients, it is necessary to pre-clinically test them, to confirm they are both safe and achieve their aim. However, there is a lack of appropriate methods for testing this. Traditional laboratory pre-clinical testing methods do not allow for testing with living bone samples and thus cannot measure implant bone ingrowth/adaptation. Live animal testing has ethical issues, is expensive and is complicated by anatomical differences and unknown loading. Computational models require input and validation data and so require a previous laboratory/animal/clinical study. The other alternative is clinical trial, which is effectively experimenting on patients. It also often requires years/decades of waiting to determine the outcome, and thus is only suitable as the final step of new product development. This research project aims to overcome limitations in pre-clinical testing by using a bioreactor system to enable implant fixation technologies to be tested against 'living' bone in the laboratory. The developed methods will be validated with established clinical technologies, before being applied to pre-clinically test a novel implant fixation concept. The long-term ambition for this research is to lower the risk for patients enrolling on clinical trials, reduce the need for ineffective live animal testing, and improve orthopaedic implants through enabling fixation technology to be optimised for in vivo performance.

Data Management Plans
Powered by OpenAIRE graph

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::30a73d4610f14e81bffd7553dc4e1aad&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down