Loading
C3PO: advanced Concept for laser uplink/ downlink CommuniCation with sPace Objects represents a radical improvement in performance of existing ground to low earth orbit communication systems in terms of weight reduction, on-board power consumption, data rate and communication security & confidentiality. C3PO in figures: - Mass reduction by a factor 14 - On-board power consumption reduction by a factor 100 - Data rate increase by a factor 2 The project's objectives are to - Design a solution to improve actual downlink and uplink communication systems based on a non-space disruptive technology - Improve enabling Space Surveillance & Tracking technologies performances to meet the final system needs - Increase the Multiple Quantum Well Technology Readiness Level from 2 to 4 - Improve the overall perfromance of space communication systems - Identify the C3PO system market and Business Model - Increase the system safety (including regulation and governance issues) This is achieved through an operational analysis of the final system, the validation of major system parameters through 2 experiments, the consolidation of the system architecturen the elaboration of the associated development roadmap and the definition of the system Business Model. The Multiple Quantum Well retro-reflector technology, derived from non-space domain, is incorporated into the current state of the art as a high-rate lightweight communication device. Its development in the space sector has a disruptive impact on the satellites and satellite imagery markets, enabling new missions such as CubeSat earth observations. The proposed project serve the Union's Common Security & Defence Policy by increasing the satellite communications security. C3PO mobilises traditional space actors and non-space actors such as TEMATYS (SME) and ACREO (Research).
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9621fd14f7951d6bb0097462ba5c2b59&type=result"></script>');
-->
</script>