Powered by OpenAIRE graph

INCORWAVE

Nonlinear inversion of correlation waveforms with hierarchical reconstructions
Funder: European CommissionProject code: 101116288 Call for proposal: ERC-2023-STG
Funded under: HE | ERC | HORIZON-ERC Overall Budget: 1,416,540 EURFunder Contribution: 1,416,540 EUR

INCORWAVE

Description

Waves propagating through a complex medium provide a non-invasive way to probe its interior structures. In ambient noise imaging, the input data are the cross-correlation of the stochastic wavefields. To reconstruct the properties of the medium, the waveform inversion is formulated as an optimization problem involving a misfit function whose convexity plays a critical role in the achievable spatial resolution of the inversion results, especially in the absence of a priori information about the medium. Current inversions are often limited by computational cost, cross-talk between the physical quantities, and the use of single-scattering approximations. Project INCORWAVE proposes to create a new mathematical and computational framework for nonlinear inversion of full waveform cross-correlation. Two specific problems are considered: first, for the reconstruction of geophysical visco-elasticity tensors with applications to Earth's subsurface monitoring; secondly, for the reconstruction of three-dimensional flows in the Sun to characterize the poorly understood properties of deep solar convection. To improve the convexity of misfit functions, the inversion procedure of project INCORWAVE will follow a hierarchical progression which is established by selecting subsets of input data, unknown parameters, and frequencies. The choice of each of these subsets, as well as the associated misfit function, is controlled by criteria in form of convergence estimates. Indispensable to meaningful inversion is accurate modeling operators that describe the physics under consideration and that are adapted to the treatment of real data. For the reconstruction of the elasticity tensor, the project will develop a solver in terms of P- and S-potentials for heterogeneous media. A 3D global Sun vector-wave solver is created for the inversion of the convection component of the solar flow that does not bear symmetry.

Partners
Data Management Plans
Powered by OpenAIRE graph

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

All Research products
arrow_drop_down
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::b56b28aa5944a2b1b634bb40e29fe23f&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu

No option selected
arrow_drop_down