Loading
Nuclear Magnetic Resonance (NMR) is a very powerful analytical tool employed in a wide range of situations, such as elucidation of organic structures, biochemical studies, pharmaceutical analysis or in vivo spectroscopy. However, it suffers from major limitations due to strong overlap between peaks, and this is particularly true for complex metabolic mixtures. Therefore, 1D NMR offers a limited capacity for the precise quantification of interesting biomarkers in complex samples. Fortunately, two dimensional (2D) spectroscopy allows the unraveling of spectral complexity along a second dimension and thus presents a great potential to unambiguously and simultaneously measure a larger number of metabolite contributions. However, it is still rarely used for quantification, first because quantitative analysis by 2D NMR requires a calibration procedure due to the multi-impulsional nature of 2D NMR experiments, and above all because of the prohibitive experiment duration that is necessary to obtain such a calibration curve, due to the multi-scan nature of 2D NMR experiments. Fortunately, the past few years have witnessed the emergence of a novel and promising method that makes it possible to acquire a whole 2D spectrum in a fraction of a second. This so-called “ultrafast 2D NMR” method, proposed by Pr. Lucio Frydman, is based on a single-scan approach. Very recently, we have successfully implemented this methodology at the CEISAM laboratory. We have proposed several methodological developments to make ultrafast 2D NMR suitable for quantitative analysis of mixtures, thus enlarging the application range of this promising method. Based on this experience, the ambition of the QUANTUM project is to develop a complete methodology to set ultrafast 2D NMR as a standard tool for fast and precise quantitative analysis of complex metabolic mixtures. This project will consider original NMR developments and programming aspects, focusing on the resolution and sensitivity aspects of ultrafast methods. A complete analytical validation of these optimized methods will be carried out, in order to make them applicable to quantitative studies of real metabolic samples such as tumor cell extracts. At the end of the project, we will propose a package including the analytical strategy, the pulse sequences and the pre-acquisition and processing routines for quantitative ultrafast 2D experiments, that will be easy to implement in routine. This package will be available online on the CEISAM website, for free distribution to the academic community Our interest in ultrafast 2D NMR is an emergent research axis in our research group, which has an international expertise in isotopic analysis applied to natural product authentication and for elucidating metabolic pathways. However, even though we started working on ultrafast 2D NMR in 2007, we became in three years the second group in the world (first in Europe) regarding the number of papers on ultrafast 2D NMR. Moreover, we are the authors of the only paper published so far reporting the application of ultrafast 2D NMR to quantitative analysis. Fortified by our experience and in order to enlarge the diffusion of ultrafast methods, we wish to make ultrafast 2D NMR accessible in routine to a large number of research groups in the world, by developing adapted programs integrated to existing commercial software, and by making these available to the scientific community. Finally, the QUANTUM project will be an opportunity to develop fast quantitative 2D NMR methods applied to metabolomic studies, which really constitutes a new approach in the CEISAM laboratory. It should open new application perspectives that are currently out of the laboratory expertise.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::1d16b809f30a8330ba25d58fcf609d83&type=result"></script>');
-->
</script>