Powered by OpenAIRE graph

University of Belgrade

University of Belgrade

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N033655/1
    Funder Contribution: 372,896 GBP

    The project aims to develop a ground-breaking class of materials: functional porous polymers able to expand and collapse their volume fully autonomously in a predesigned rhythm for a predesigned duration. The goal of this fellowship is to produce biocompatible rhythmic (pulsatile) materials for medical applications. In particular, for controlled/targeted drug delivery in chronopharmacotherapy to treat diseases with established oscillatory rhythms in their pathogenesis, e.g. arthritis (10 million people in UK), duodenal ulcers (1 in 10 people in UK), cancer (1 in 4 of all deaths in UK) and cardiovascular diseases (1 in 4 adults in UK). Also, for mechanoresponsive tissues (e.g. bone and the vascular system) in regenerative medicine to facilitate cell activity and the assembly of mechanically robust and biologically functional tissue (organs). The proposed methodology incorporates collaboration with BDD (http://www.bddpharma.com/) and internationally recognised academic partners. This will enhance progress, knowledge dissemination, mitigate risks and ensure the materials are suitable for end-user driven development of fit-for-purpose products, and will accelerate transfer of research outcomes to healthcare applications. The proposal is built on the ground-breaking discovery of chemical oscillators employing polymeric substrates (Chem Commun 2014) and in-depth studies of biocompatible intelligent hydrogels (Adv Mater Sci Eng 2015) resulting from CAF2009. The project duration is 2 years and the methodology has 3 work packages (WP). WP1 in collaboration with Professor Vancso's group, Twente University, addresses the synthesis and experimental validation of proof-of-principle autonomous polymeric materials. In WP2, in collaboration with BDD company, characterisation and validation of the materials is pursued to meet end-user needs and regulatory requirements. WP3 in collaboration with Professor Kolar-Anic's group, Belgrade University, focuses on the development of predictive physico-chemical models to aid experimental studies and facilitate the design of patient-tailored materials. The proposal is aligned with Healthcare Technologies Grand Challenges (Developing Future Therapies; Optimising Treatment) and Advanced Materials and Future Manufacturing Technologies areas of research.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V006932/1
    Funder Contribution: 615,160 GBP

    Along with many other countries worldwide, the UK is committed to achieving a low carbon economy. There is a plan to achieve net zero carbon dioxide emissions by 2050, with a key component of this plan being a ban on the sale of new petrol and diesel cars by 2035, and a switch to electric vehicles. These vehicles will require storage batteries that contain many components made of metals that have limited supplies. For example, a recent open letter authored by Professor Richard Herrington (principal investigator for the NHM on this proposal) explained that if the UK is to meet its electric car targets, it will require three quarters of the world's current total annual production of lithium - an essential component of modern electric vehicle batteries. Whilst current rates of lithium production are sufficient to meet global demand, we need to investigate additional lithium resources if we are to meet greenhouse gas emission targets. This proposal seeks to better understand the Earth system processes that concentrate lithium into mineral deposits, from which lithium can be mined in both an economically feasible and an environmentally responsible manner. Our central hypothesis is that major lithium deposits are largely formed in parts of the world where continental collision occurs as a consequence of plate tectonics. We will further test the hypothesis that within these collisional environments there is a "life-cycle" of tectonic processes that is reflected in the formation of different types of lithium deposits. Broadly speaking, in the first stage lithium is moderately concentrated in igneous rocks that are formed in this setting. Lithium is a relatively soluble element, which is readily leached and weathered from these rocks (particularly by hot geothermal water) and the lithium-rich waters may accumulate in basins that are also formed during continental collision. If the climate is arid, the waters evaporate to form a lithium-rich brine that can be an economically viable lithium deposit in its own right. In these brine basins, complex chemical processes and extreme microbial life may play a role in cycling elements and concentrating the lithium into sediments. Over time, the geothermal and volcanic activity ceases and the lithium-rich sediments may be buried and thus preserved for millions of years. Subsequently, these buried rocks may also serve as a source of lithium that can be extracted. With further burial and then heating, these lithium-rich sediments can reach temperatures at which they undergo melting and the formation of lithium-enriched pegmatites and granites. Again, these rocks may contain sufficient concentrations and amounts of lithium to represent a source of lithium that can be extracted for ultimate incorporation in electric vehicle batteries. At each stage of the life-cycle there are uncertainties regarding the source of lithium, and how it is transported and trapped. The different types of lithium deposits also vary in how easy it is to extract the lithium, and we need to consider how to do this in an environmentally responsible way. We will tackle these problems by bringing together a group of scientists who have considerable expertise in all aspects of this lithium journey. We will use a wide range of techniques, from simple geological observations through to highly sophisticated isotopic analyses and microbiological techniques, to track the behaviour of lithium. We will work alongside industry partners to identify the types of deposits that can be profitably extracted while simultaneously minimising any damage to the environment, and we will investigate the potential for more sustainable methods of lithium extraction using microbial processes. We anticipate that our research will provide industry with new targets for exploration for lithium resources. This will not only help secure a low carbon economy for the UK, but also provide important economic benefits to the UK and other nations.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/L014076/1
    Funder Contribution: 638,057 GBP

    30 years' research on metal biorecovery from wastes has paid scant attention to strong CONTEMPORARY demands for (i) conservation of dwindling vital resources (e.g platinum group metals (PGM), recently rare earth elements, (REE), base metals (BMs) and uranium) and (ii) the unequivocal need to extract/refine them in a non-polluting, low-energy way. 21stC technologies increasingly rely on nanomaterials which have novel properties not seen in bulk materials. Bacteria can fabricate nanoparticles (NPs), bottom up, atom by atom, with exquisite fine control offered by enzymatic synthesis and bio-scaffolding that chemistry cannot emulate. Bio-nanoparticles have proven applications in green chemistry, low carbon energy, environmental protection and potentially in photonic applications. Bacteria can be grown cheaply at scale for facile production. We have shown that bacteria can make nanomaterials from secondary wastes, yielding, in some cases, a metallic mixture which can show better activity than 'pure' nanoparticles. Such fabrication of structured bimetallics can be hard to achieve chemically. For some metals like rare earths and uranium (which often co-occur in wastes) their biorecovery from scraps e.g. magnets (rare earths) and wastes (mixed U/rare earths), when separated, can make 'enriched' solids for delivery into further commercial refining to make new magnets (rare earths) or nuclear fuel (U). Biofabricating these solids is often beyond the ability of living cells but they can form scaffolds, with enzymatic processes harnessed to make biomineral precursors, often selectively. B3 will invoke tiered levels of complexity, maturity and risk. (i) Base metal mining wastes (e.g. Cu, Ni) will be biorefined into concentrated sludges for chemical reprocessing or alternatively to make base metal-bionanoproducts. (ii) Precious metal wastes will be converted into bionanomaterials for catalysis, environmental and energy applications. (iii) Rare earth metal wastes will be biomineralised for enriched feed into further refining or into new catalysts. (iv) Uranium-waste will be biorefined into mineral precursors for commercial nuclear fuels. In all, the environment will be spared dual impacts of both primary source pollution AND the high energy demand of processing from primary 'crude'. Metallic scraps are tougher, requiring acids for dissolution. Approaches will include the use of acidophilic bacteria, use of alkalinizing enzymes or using bacteria to first make a chemical catalyst (benignly) which can then convert the target metal of interest from the leachate into new nanomaterials (a hybrid living/nonliving system, already shown). Environmentally-friendly leaching & acids recycle will be evaluated and leaching processes optimised via extant predictive models. The interface between biology, chemistry, mineralogy and physics, exemplified by nanoparticles held in their unique 'biochemical nest', will receive special focus, being where major discoveries will be made; cutting edge technologies will relate structure to function, and validate the contribution of upstream waste doping or 'blending'; these, as well as novel materials processing, will increase bio-nanoparticle efficacy. Secondary wastes to be biorefined will include magnet scraps (rare earths), print cartridges (precious metals), road dusts (PMs, Fe,Ce) & metallurgical wastes (mixed rare earths/base metals/uranium). Their complex, often refractory nature gives a higher 'risk' than mine wastes but in compensation, the volumes are lower, & the scope for 'doping' or 'steering' to fabricate/steer engineered nanomaterials is correspondingly higher. B3 will have an embedded significant (~15%) Life Cycle Analysis iterative assessment of highlighted systems, with end-user trialling (supply chains; validations in conjunction with an industrial platform). B3 welcomes new 'joiners' from a raft of problem holders brought via Partner network backup.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.