Powered by OpenAIRE graph

Ricardo - AEA (UK)

Ricardo - AEA (UK)

4 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/M008347/1
    Funder Contribution: 446,638 GBP

    SECURE is a network of statisticians, modellers and environmental scientists and our aim is to grow a shared vision of how to describe and quantify environmental change to assist in decision making. Understanding and forecasting environmental changes are crucial to the development of strategies to mitigate against the impacts of future events. Communications and decision making around environmental change are sometimes troubled by issues concerning the weight of evidence, the nature and size of uncertainties and how both are described. Evidence for environmental change comes from a number of sources, but key to this proposal is the optimal use of data (from observational, regulatory monitoring and earth observations platforms such as satellites and mobile sensors) and models (process and statistical). A robust and reliable evidence base is key in the decision making process, informed by powerful statistical models and the best data. This proposal will deliver the statistical tools to support decision making. Many environmental challenges related to change require statistical modelling and inferential tools to be developed to understand the drivers and system responses which may be direct or indirect and linked by feedback and lags. The character of environmental data is changing as new technologies (e.g. sensor networks offering high resolution data streams) are developed and become more widely accessible. Emerging sensor technology is able to deliver enhanced dynamic detail of environmental systems at unprecedented scale and . There is also an increasing public engagement with environmental science, through citizen science. Increasing use of citizen science observatories will present new statistical challenges, since the sampling basis of such observations will most likely be preferential and not directed, be of varying quality and collected with different effort. Fusion of the different streams of data will be challenging but essential in terms of informing society and regulators alike about change. Linkage of the different data sources, and the challenges of dealing with big data, in the environmental sphere lie in drawing together diverse, high-throughput data sources, analysing, aggregating and integrating the signals with models and then ultimately using the data-model system to address complex and shifting environmental change issues in support of decision making. Key to success lies in generating digestible outputs which can be disseminated and critiqued across academia, policy-makers and other stakeholders. In climate change, food security, ecosystem resilience, sustainable resource use, hazard warning and disaster management there are new high-volume data sources, including crowd sourced streams, which present problems and untapped opportunities around data management, synthesis, communication and real-time decision-support. Our research will involve: improving modelling and communication tools concerning uncertainty and variability, which are ubiquitous in many environmental data sources; developing and extending modelling capabilities to deal with multi-scale issues, specifically integrating over the different spatial and temporal scales of the data streams, and the derived timescales of model outputs; exploring the power and limitations of recent statistical innovations applied to environmental change issues and finally reflecting on new technologies for visualisation and communication.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/N007190/1
    Funder Contribution: 1,569,860 GBP

    Beijing suffers from very high concentrations of airborne pollutants, leading to adverse health and wellbeing for over twenty million people. The pollutants likely to have the greatest effects upon human health are particulate matter, nitrogen dioxide and ozone. Both particulate matter and nitrogen dioxide are emitted directly from individual sources (primary contributions, many of which are not well quantified); and are formed in the atmosphere (secondary contributions, which are highly complex). Ozone is entirely secondary in nature, formed from reactions of precursor gases, whose sources and abundance are also challenging to constrain. These uncertainties hinder understanding of the causes of air pollution in Beijing, which is needed to deliver effective and efficient strategies for pollution reduction and health improvement. AIRPOLL-Beijing project will address this challenge, through identification and quantification of the sources and emissions of air pollutants in Beijing. The project sits within the NERC/MRC-NSFC China megacity programme, which includes projects addressing the atmospheric processes affecting air pollutants, human exposure and health effects, and solutions / mitigation strategies to reduce air pollution and health impacts. The project exploits the combined experience and expertise of leading UK and Chinese scientists, applying multiple complementary approaches. The project deploys multiple atmospheric measurement and analysis strategies to characterise pollutant abundance and sources, develop novel emissions inventories, and integrate these to produce new modelling tools for use in policy development. We adopt a range of state-of-the-science approaches: -Receptor Modelling, where detailed composition measurements are used to infer pollutant sources from their chemical signatures, combining world-leading UK and Chinese capability. -Flux Measurements, where the total release of pollutants from all sources is measured, providing a key metric to refine emission inventories. We will combine near-ground measurements (using the unique Institute of Atmospheric Physics 325m tower in central Beijing), ground-based observations and fluxes derived from satellite observations. -3D spatial analysis, in which a novel sensor network will be deployed around central Beijing to measure pollutant fields. -Development of novel emissions inventories, which will predict the temporally- and spatially- resolved emissions of air pollutants from all sources, enhancing existing capability. -Development of new online modelling tools, within which to integrate emissions, atmospheric processing and meteorology to predict primary and secondary pollutant concentration fields. AIRPOLL-Beijing will integrate these approaches to provide thorough understanding of the sources and emissions of air pollutants in Beijing, at unprecedented detail and accuracy. While the project is a self-contained activity, key deliverables feed into Processes, Health and Solutions themes of the programme. This proposal seeks Newton fund support, part of the UK's Official Development Assistance (ODA) commitment. The project will directly address ODA objectives, in the categories of (i) people (through the joint development of novel scientific approaches to the understanding of megacity air pollution), (ii) programmes (as all aspects of the project are joint UK-Chinese research endeavours) and (iii) translation (through provision of detailed air pollution source assessments, in support of assessment of health impacts and development of mitigation strategies). More generally, the project will leave a legacy of improved air pollution understanding and research capacity of the Chinese teams, and, through integration with other themes of the Megacities programme, underpin improvements in the health and welfare of the population of Beijing, and across China more widely - ultimately benefitting more than a billion people.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/L013908/1
    Funder Contribution: 722,453 GBP

    Having historically disposed of vast quantities of industrial, municipal, metallurgical and mining waste into the ground, societies have put into geological storage an enormous amount of resources in a range of materials of value such as metals and energy (in the form of biomass and polymers). Therefore, instead of considering these waste repositories to be a legacy waste issue and a long-term liability, a paradigm shift is required to view these installations as "resource hubs" for future recovery. The proposed research aims to contribute towards the development of a new and exciting research field related to resource recovery from existing waste repositories and seeks to address the following central question: Can resources, specifically elements of value (e.g. Au, Pd, Ag, Cu, Pb, Zn, Co, Ni, Sn and Cr), 'E-tech' elements used in clean energy and other environmental applications (e.g. neodymium and other rare earth elements) and energy (through enhanced methane generation) be recovered by leaching and other treatments whilst the material lies in situ, thus avoiding the need to actively mine the material and thereby minimising ecological and environmental impacts? The fundamental geoscience research question that underpins this is: How can we understand and manipulate the in situ biogeochemistry of the waste within the geological repository to recover resource? The rationale behind the research is to examine new technologies for resource recovery with a lower environmental impact than active ('dig and process') mining of wastes, or of virgin ores. The concept and technology of in situ leaching has been developed in the mining industry for recovery of uranium and copper, and is done by circulating solutions to extract the elements and/or stimulating and enhancing microbial leaching. The possibility of transferring this concept for application to recovery of resource from waste repositories has not been fully addressed previously. Wastes display diverse compositions, mineralogies and textures very different to that of ores and thus will require new science to understand and develop leaching methods to solubilise valuable components. We will consider resource extraction from the full range of wastes currently in UK waste repositories including industrial and commercial waste (anticipated to be metal-rich), incinerator and fuel ash, mineral wastes and municipal wastes to examine the idea of in situ leaching. We are particularly keen to identify during the grant which types of landfilled waste streams might be relatively enriched in certain resources and focus the research on recovery from these wastes as a starting point. We envisage that in situ leaching could sidestep many of the problems that prevent realisation of the resource potential of waste repositories, with important impacts not only in the UK but internationally. Furthermore, our aim is to not only investigate means to recover resource through in situ leaching but to also investigate how we can appropriately benchmark such processes (which we anticipate may have substantially lower environmental and human health impacts) in terms of life-cycle, human health and ecosystems service costs as well as public opinion for comparison to retrieval of landfilled resources by 'conventional' dig-and-process landfill mining and against conventional mining of the same resources. This aims to provide evidence to demonstrate not only that the techniques are technically feasible but that they offer reduced impact compared to conventional technologies, are acceptable to stakeholders and thus are a feasible and appropriate approach to future management of wastes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L014912/1
    Funder Contribution: 4,417,540 GBP

    This world-leading Centre for Doctoral Training in Bioenergy will focus on delivering the people to realise the potential of biomass to provide secure, affordable and sustainable low carbon energy in the UK and internationally. Sustainably-sourced bioenergy has the potential to make a major contribution to low carbon pathways in the UK and globally, contributing to the UK's goal of reducing its greenhouse gas emissions by 80% by 2050 and the international mitigation target of a maximum 2 degrees Celsius temperature rise. Bioenergy can make a significant contribution to all three energy sectors: electricity, heat and transport, but faces challenges concerning technical performance, cost effectiveness, ensuring that it is sustainably produced and does not adversely impact food security and biodiversity. Bioenergy can also contribute to social and economic development in developing countries, by providing access to modern energy services and creating job opportunities both directly and in the broader economy. Many of the challenges associated with realising the potential of bioenergy have engineering and physical sciences at their core, but transcend traditional discipline boundaries within and beyond engineering. This requires an effective whole systems research training response and given the depth and breadth of the bioenergy challenge, only a CDT will deliver the necessary level of integration. Thus, the graduates from the CDT in Bioenergy will be equipped with the tools and skills to make intelligent and informed, responsible choices about the implementation of bioenergy, and the growing range of social and economic concerns. There is projected to be a large absorptive capacity for trained individuals in bioenergy, far exceeding current supply. A recent report concerning UK job creation in bioenergy sectors concluded that there "may be somewhere in the region of 35-50,000 UK jobs in bioenergy by 2020" (NNFCC report for DECC, 2012). This concerned job creation in electricity production, heat, and anaerobic digestion (AD) applications of biomass. The majority of jobs are expected to be technical, primarily in the engineering and construction sectors during the building and operation of new bioenergy facilities. To help develop and realise the potential of this sector, the CDT will build strategically on our research foundation to deliver world-class doctoral training, based around key areas: [1] Feedstocks, pre-processing and safety; [2] Conversion; [3] Utilisation, emissions and impact; [4] Sustainability and Whole systems. Theme 1 will link feedstocks to conversion options, and Themes 2 and 3 include the core underpinning science and engineering research, together with innovation and application. Theme 4 will underpin this with a thorough understanding of the whole energy system including sustainability, social, economic public and political issues, drawing on world-leading research centres at Leeds. The unique training provision proposed, together with the multidisciplinary supervisory team will ensure that students are equipped to become future leaders, and responsible innovators in the bioenergy sector.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.