Amazon Web Services EMEA SARL
Amazon Web Services EMEA SARL
12 Projects, page 1 of 3
assignment_turned_in Project2024 - 2032Partners:NIHR Biomedical Research Centre at UCLH, UK Health Security Agency, Medicines & Healthcare pdts Reg Acy MHRA, 1928 Diagnostics AB, Great Ormond Street Hospital +14 partnersNIHR Biomedical Research Centre at UCLH,UK Health Security Agency,Medicines & Healthcare pdts Reg Acy MHRA,1928 Diagnostics AB,Great Ormond Street Hospital,National Biofilms Innovation Centre,Procter & Gamble Limited (P&G UK),National Physical Laboratory,Phico Therapeutics Ltd,Oxford Nanopore Technologies (United Kingdom),The Francis Crick Institute,BioIndustry Association,Test Labs Ltd,Bonalive Biomaterials Ltd,Royal National Orthopaedic Hospital,Amazon Web Services EMEA SARL,Ideal Standard (UK) Ltd,Dyson Limited,UCLFunder: UK Research and Innovation Project Code: EP/Y035658/1Funder Contribution: 6,641,470 GBPInfectious diseases come at a huge societal and economical cost. This has recently been shown by the COVID-19 pandemic. Looking forward, arguably the largest threat is antimicrobial resistance (AMR). As pathogens develop resistance against currently available antimicrobials (e.g., antibiotics) and as the development of new antimicrobials has stalled, we are risking an estimated 10M deaths per year globally and a US$100 trillion costs to the world economy by 2050. We here propose a Centre for Doctoral Training on Engineering Solutions for Antimicrobial Resistance, with the overall aim of training physical scientists and engineers with the specialist research skills as well as broad contextual skills to create rapid impact targeting the AMR challenge. This includes different disciplines and wider aspects such as commercialisation/translation, public-health context, regulation and standardisation, implementation and adoption, public awareness and perception, and communication. Identifying key research areas that depend on cutting-edge research advances in engineering and physical sciences, our Centre for Doctoral Training focuses on preventing the spread of infection, on surveillance and diagnostics, and on antimicrobial and vaccine development. By designing and delivering our training programme with public health institutions, multinational businesses, SMEs and charities, we maximise the impact of such research on addressing the public health threat of AMR and on exploiting business opportunities that are also associated with solutions to it.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a14eef62e8c321f202bda68fed3783f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a14eef62e8c321f202bda68fed3783f9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:GAMS Software GmbH, DEVITO CODES LTD, Rapiscan (Global), DELL Technologies, Enthought Ltd +14 partnersGAMS Software GmbH,DEVITO CODES LTD,Rapiscan (Global),DELL Technologies,Enthought Ltd,The Francis Crick Institute,Isaac Newton Institute,Rafinex S. a r.l.,J.P. Morgan,UCL,CCFE/UKAEA,Amazon Web Services EMEA SARL,Gurobi Optimization, LLC,Schlumberger (United Kingdom),McLaren Honda (United Kingdom),Graphcore,SURF,Netherlands eScience Center,Oak Ridge National LaboratoryFunder: UK Research and Innovation Project Code: EP/Y034767/1Funder Contribution: 8,795,900 GBPSince the advent of numerical weather prediction in the early twentieth century, physics driven computational modelling has gone from strength to strength, underpinning much of the modern world, from the design of new bridges and buildings that can withstand earthquakes, to the aerodynamic optimisation of airplanes and the simulation of materials for batteries underpinning the electric car revolution. But physics based models alone have limits in what they can do. From high dimensional control problems to multiscale fluid flow, there are many important systems where conventional discretise-and-solve approaches remain permanently out reach. In other important systems, we have no physical models at all (in natural language processing and many other areas). In these data based approaches we have seen tremendous advances over the last decade, exemplified by the deep learning revolution. There is a now a growing consensus that computational models of tomorrow will consist of combinations of physics and data driven approaches and should not be viewed separately from each other. There is one more missing ingredient, attaining increasing recognition by research labs across the world, namely research software engineering. Traditionally seen as a professional service to support the implementation of computational models, research software engineering now emerges as an equal academic pillar to computational mathematics and data driven approaches. Software design, and hardware limitations, inform and shape the design of computational methods. Researchers need to take a holistic view across computational modelling and software engineering to create truly innovative solutions to the truly challenging problems from digital twins in personal medicine to simulating and mitigating the effects of climate change. This CDT has been designed around the need to train graduates across the interfaces of physics and data driven computational modelling and research software engineering. Our trainees will be able to engage with challenging problems not only from a modelling perspective but also from a software perspective, moving fluently across modelling and research software engineering. The subsequent urgent need for training in research software engineering at the highest level is also increasingly recognised by research centres across the world. We have partnered with a number of institutions in this proposal who follow this vision. In the UK this has been recently exemplified by the Independent Review of the Future of Compute, which recognised the importance of pairing infrastructure investments with skills programmes, and the importance of creating, attracting and retaining world class compute talent. Paired with an innovative training programme around interface working groups and software projects, our graduates will participate in and shape world leading research across the mathematics of data enhanced computational modelling, the design of corresponding computational algorithms, scientific research software engineering, and domain specific applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fcb8046c27dd6c2c44e9533722925244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::fcb8046c27dd6c2c44e9533722925244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:National Police Chief's Council, Vortex IoT, Theseus Risk Management Ltd., Gallagher Ins, Risk Managmt & Consulting, Nexor (United Kingdom) +14 partnersNational Police Chief's Council,Vortex IoT,Theseus Risk Management Ltd.,Gallagher Ins, Risk Managmt & Consulting,Nexor (United Kingdom),Northumbria Police,The Home Office,National Crime Agency,BRONIC LTD,UNIVERSITA CATTOLICA DEL SACRO CUORE,BAE Systems,Albion Capital,WUT,Digital Catapult,Historic Bldgs & Mnts Commis for England,Paris Dauphine University - PSL,Kelda Group (United Kingdom),Amazon Web Services EMEA SARL,UCLFunder: UK Research and Innovation Project Code: EP/Y035410/1Funder Contribution: 7,996,860 GBPCyber-physical risks pose new challenges to the UK security and defence community. Nation state actors are increasingly equipping themselves with tools capable of causing damage to cyber-physical systems. During times of elevated threat, e.g. the Ukraine war, it has become common for such tools to be used in the theatre of conflict, but the risk that they will be used outside the affected region also increases, as does the risk that they will fall into the hands of non-state actors and used more widely than against conventional cyber-physical systems. At the same time, society as a whole is developing a growing reliance on social-media, apps, connected IoT devices and both AI and Mixed Reality. By itself, this also has major security implications leading to high volumes of new crimes that need addressing but, when used in combination with cyber-physical attacks, a qualitatively different form of attack is experienced, known as a hybrid threat because of its similarity to the hybrid cyber/kinetic warfare that has emerged as a feature of recent conflicts. Our team will create a cohort of leaders equipped with specialist skills specifically adapted to tomorrow's cyber-physical risks. They will learn how to (1) manage risks that develop jointly across the cyber and physical domains, (2) reduce risks in one domain by intervening in the other domain, (3) understand how criminal groups protect their interest by operating across domains, and (4) pre-empt the propagation of unintended consequences from one domain to the next. These future leaders will also undertake an intense programme of activities designed to nurture key complementary skills. The eXchange, Lead!, Get it Done, and Next Step schemes will be shaped with our industry partners to address important gaps highlighted in a recent government report: "40% of businesses reported that cybersecurity job applicants are deficient in their complementary skills". Beyond fostering technical expertise, the CDT will help students and partners develop an acute awareness of the wider issues and dilemmas posed by all such work in democratic societies. To deliver an exceptional learning experience, we bring a powerful group of industry partners and academic experts from the engineering, natural and social sciences within a single-site research training centre in London. Academically excellent and pro-active within and between cohorts, the 50+ CDT students will specialise in a range of scientific techniques from at least two of the following four 'cyber-physical risk' themes. These were selected in consultation with students and partners based on their relevance, attractiveness and employment opportunities: 1. Futures: forecast how future socio-technical trends will shape the geopolitical implications of cyber-physical risk, understand how to co-design effective control and mitigation measures for different legal, technical, and policy contexts in order to support societal resilience. 2. Cyber-physical systems: support regulation of IoT devices, detect 'below the radar' attacks against cyber-physical control systems; contribute to the resilience of critical infrastructures. 3. Online Communication: prevent the misuse of social media for disinformation campaigns, detect incitement to hate crime in games, analyse crime related communication on the dark web, etc. 4. Simulation and Interaction: develop and apply simulation technologies (e.g., digital twins, VR, XR) for the study of human behaviour in a range of cyber-physical risk scenarios. EPSRC areas directly relevant to the following themes: Artificial intelligence technologies, Building a secure and resilient world, Digital security by design, Digital signal processing, Human communication in information and communication technologies, Human-computer interaction, ICT networks and distributed systems, Image and vision computing, Natural language processing, Operational research, Pervasive and ubiquitous computing.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::498ee2d656c7ef399d5deb48b3879dad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::498ee2d656c7ef399d5deb48b3879dad&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2025 - 2032Partners:Croda Europe Ltd, Centre for Process Innovation CPI (UK), Nanovation Therapeutics UK Ltd, NIHR Moorfields BRC, BASF PLC +15 partnersCroda Europe Ltd,Centre for Process Innovation CPI (UK),Nanovation Therapeutics UK Ltd,NIHR Moorfields BRC,BASF PLC,Amazon Web Services EMEA SARL,East Suffolk & North Essex NHS Ftn Trust,Pfizer Global R and D,GSK,NIHR Nottingham Biomedical Research C,Quotient Sciences Limited (UK),UCL,Upperton Pharma Solutions,4basebio Discovery Ltd,M2M Pharmaceuticals Limited,Nottingham University Hospitals,Nemaura Pharma (United Kingdom),ASTRAZENECA UK LIMITED,NIHR UCLH BRC,NIHR GOSH Biomedical Research CentreFunder: UK Research and Innovation Project Code: EP/Y035011/1Funder Contribution: 6,093,840 GBPMedicines are complex products. In addition to the drug (a molecule which causes a pharmacological effect in the body), they also contain a number of other ingredients (excipients). These are added for a variety of reasons (e.g. to ensure stability or to target the drug to a particular part of the body). A very careful assessment is required to prepare a potent and safe medicine. New types of drug molecule are being devised rapidly and have the potential to transform patients' lives. However, there is a long time-lag (10 - 15 years) between the discovery of a new drug and its translation into a medicine. Most of this time is taken up by developing a suitable "formulation" (drug + excipients) and then testing this. There are very significant benefits that would be realised from accelerating the process: this was made clear by the COVID-19 pandemic, in which the rapid development of vaccines led to millions of lives being saved, and is particularly important as society ages and patients live for prolonged periods of time with multiple conditions. The UK traditionally has been a powerhouse for medicines discovery, and the medical technology and pharmaceutical sector is still a vital part of the economy. However, productivity has recently declined, and compared to peer countries the UK has a lack of high-innovation firms. If medicines development can be accelerated in the UK, there will be huge economic and societal benefits, in addition to profound improvements to the lives of individual patients. To realise this ambition, the UK pharmaceutical sector needs highly-trained, doctoral-level, scientists with the skills required to accelerate research programmes in medicines development. The Centre for Doctoral Training (CDT) in Accelerated Medicines Design & Development seeks to meet this user need, by building a cohort of innovators and future leaders. We will do this between two universities and in collaboration with a network of industrial and clinical partners from across the UK pharmaceutical, healthcare and medical technologies sector. Comprehensive science training will enable our students to develop the high-level laboratory and computational skills needed to overcome the major challenges in medicines development. Our alumni will be expert practitioners at integrating lab and digital research, recognised by industry as crucial to accelerate medicines development. Our students will receive extensive transferable skills training, ensuring that they graduate with high-level teamworking, communication, leadership and entrepreneurial skills. We will foster an open and supportive environment in which students can challenge ideas, experiment, and learn from mistakes. Equality, diversity and inclusiveness, sustainability, and responsible innovation will be at the heart of the CDT, and embedded throughout our training. By liaising closely with industry and clinical partners, we will ensure that the research undertaken in the CDT is directly relevant to the most significant current challenges in medicines development. We will further embed interactions with patients to ensure that the products are acceptable to both patients and clinicians. This will allow us to directly contribute to the acceleration of medicines development, and ultimately will deliver major benefits to patients as new products come on to the market. Our graduates will join companies across the pharmaceutical, medical technology and healthcare fields, where they will innovate and drive forward research programmes to accelerate medicines development for a broad range of diseases. They will ensure that new therapies come to market and the health and well-being of individuals across the world is improved. Others will enter academia, training the next generation. Our alumni will seed a future landscape in which medicines are designed and manufactured in a manner which protects our environment, and in which there is equality of opportunity for all.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f1f51e4c04319ee20376356fc7f11fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7f1f51e4c04319ee20376356fc7f11fa&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:SeeQC UK, UCL, National Physical Laboratory, Riverlane, Quantinuum +19 partnersSeeQC UK,UCL,National Physical Laboratory,Riverlane,Quantinuum,Nu Quantum,Keysight Technologies,ZURICH INSTRUMENTS AG,BT plc,Quantum Motion,National Quantum Computing Centre,Oxford Instruments (United Kingdom),Universal Quantum Ltd,Amazon Web Services EMEA SARL,PASQAL,Oxford Ionics,PhaseCraft Ltd,IBM UNITED KINGDOM LIMITED,Oxford Quantum Circuits,IQM,Bluefors Oy,THALES UK LIMITED,Toshiba Europe Limited (UK),Quandela SASFunder: UK Research and Innovation Project Code: EP/Y035046/1Funder Contribution: 8,340,420 GBPThe primary objective of the QC2 CDT is to train the upcoming generation of pioneering researchers, entrepreneurs, and business leaders who will contribute to positioning the UK as a global leader in the quantum-enabled economy by 2033. The UK government and industry have demonstrated their commitment by investing £1 billion in the National Quantum Technologies Programme (NQTP) since 2014. In its March 2023 National Quantum Strategy document, the UK government reaffirmed its dedication to quantum technologies, pledging £2.5 billion in funding over the next decade. This commitment includes the establishment of the UKRI National Quantum Computing Centre (NQCC). The fields of quantum computation and quantum communications are at a pivotal juncture, as the next decade will determine whether the long-anticipated technological advancements can be realized in practical, commercially-viable applications. With a wide-ranging spectrum of research group activities at UCL, the QC2 CDT is uniquely situated to offer comprehensive training across all levels of the quantum computation and quantum communications system stacks. This encompasses advanced algorithms and quantum error-correcting codes, the full range of qubit hardware platforms, quantum communications, quantum network architectures, and quantum simulation. The QC2 CDT has been co-developed through a partnership between UCL and a network of UK and international partners. This network encompasses major global technology giants such as IBM, Amazon Web Services and Toshiba, as well as leading suppliers of quantum engineering systems like Keysight, Bluefors, Oxford Instruments and Zurich Instruments. We also have end-users of quantum technologies, including BT, Thales, NPL, and NQCC, in addition to a diverse group of UK and international SMEs operating in both quantum hardware (IQM, NuQuantum, Quantum Motion, SeeQC, Pasqal, Oxford Ionics, Universal Quantum, Oxford Quantum Circuits and Quandela) and quantum software (Quantinuum, Phase Craft and River Lane). Our partners will deliver key components of the training programme. Notably, BT will deliver training in quantum comms theory and experiments, IBM will teach quantum programming, and Quantum Motion will lead a training experiment on semiconductor qubits. Furthermore, 17 of our partners will co-sponsor and co-supervise PhD projects in collaboration with UCL academics, ensuring a strong alignment between the research outcomes of the CDT and the critical research objectives of the UK quantum economy. In total the cash and in-kind contributions from our partners exceed £9.1 million, including £2.944 million cash contribution to support 46 co-sponsored PhD studentships. QC2 will provide an extensive cohort-based training programme. Our students will specialize in advanced research topics while maintaining awareness of the overarching system requirements for these technologies. Central to this programme is its commitment to interdisciplinary collaboration, which is evident in the composition of the leadership and supervisory team. This team draws expertise from various UCL departments, including Chemistry, Electronics and Electrical Engineering, Computer Science, and Physics, as well as the London Centre for Nanotechnology (LCN). QC2 will deliver transferable skills training to its students, including written and oral presentation skills, fostering an entrepreneurial mindset, and imparting techniques to maximize the impact of research outcomes. Additionally, the programme is committed to taking into consideration the broader societal implications of the research. This is achieved by promoting best practices in responsible innovation, diversity and inclusion, and environmental impact.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right