VTT Technical Research Centre of Finland
VTT Technical Research Centre of Finland
16 Projects, page 1 of 4
assignment_turned_in Project2008 - 2013Partners:Royal Holloway University of London, VTT Technical Research Centre of Finland, VTT , VTT Technical Research Centre of FinlandRoyal Holloway University of London,VTT Technical Research Centre of Finland,VTT ,VTT Technical Research Centre of FinlandFunder: UK Research and Innovation Project Code: EP/F041128/1Funder Contribution: 275,881 GBPWe intend to develop a new user-friendly technology that would enable small devices to be cooled to exceedingly low temperatures (<100mk). Such a capability will allow diverse and futuristic applications to flourish. These include the detection of black holes, cancer detection and quantum computing. We propose to do this by using an electronic cooling process where relatively energetic (hot) carriers (electrons or holes) quantum mechanically tunnel out of a medium, thereby causing the average electronic temperature in the medium to decrease. The application of this process to realise extremely low temperatures is very new, and we want to greatly improve its efficiency by introducing a new generation semiconductor SiGe into the design of the electronic cooler and, along with it, the well developed silicon processing techniques - so that, ultimately, such coolers can be produced economically and to industrial standards. Coolers will be fabricated around the periphery of a small silicon chip with thermal links to the active device ( payload ) mounted in the centre of the chip. This requires very good thermal design such that the electronic cooler efficiently cools the payload. However, in some cases, it is only necessary to cool the electrons / not the lattice atoms; here SiGe gives a lot of flexibility in controlling the thermal coupling between the electrons and the lattice. Such electronic coolers can operate from a starting temperature of 0.3K, which can be produced by a cryogenic fluid-free closed-cycle helium cryostat, so that a turn-switch technology can be envisaged enabling access to ~10mK working environments. This will be a huge technology step forward, as existing techniques require massive and complex cryogenic fluid-based equipment.During the first phase of the project we will examine several approaches to the realisation of effective electronic cooling, exploiting the wide range of fundamental electronic conditions that can be obtained at very low temperatures in SiGe with its associated metal silicides / thereby enhancing carrier transport and thermoelectric effects. The new coolers will then be tested in two areas of great topical interest, namely radiation detectors and quantum information devices. They could dramatically enhance our ability to detect, for example, the photons that emanate from the earliest black holes, with satellite-based detectors operating at <100mK. And, very significantly, such detectors could revolutionize the fluorescence light detection that is used extensively in biomedical research, enabling advances in our understanding of genetically-based diseases (e.g. cancer) and the workings of a single cell. Furthermore, the computational vista that is opened-up by the quantum computing era requiring qubit devices operating at 10-20mK, is truly awe inspiring. Warwick is co-ordinating the project and has assembled a tightly knit consortium of scientists and engineers with appropriate expertise from four UK universities -Warwick, Cardiff, Leicester and London(Royal Holloway) - and four leading-edge companies, concerned with the development of this technology and the demonstration of its applicability and advantages in two key areas. We are also working closely with Europe's leading centre on mK coolers (Helsinki University of Technology). The UK is exceedingly well positioned to derive benefit from this genuinely new and exciting technology, and this project will sow the seeds for its realisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f8718482aca8c2187dd18a97abd8a45d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f8718482aca8c2187dd18a97abd8a45d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2013Partners:VTT Technical Research Centre of Finland, University of Leicester, VTT Technical Research Centre of Finland, VTT , University of LeicesterVTT Technical Research Centre of Finland,University of Leicester,VTT Technical Research Centre of Finland,VTT ,University of LeicesterFunder: UK Research and Innovation Project Code: EP/F041470/1Funder Contribution: 272,134 GBPWe intend to develop a new user-friendly technology that would enable small devices to be cooled to exceedingly low temperatures (<100mk). Such a capability will allow diverse and futuristic applications to flourish. These include the detection of black holes, cancer detection and quantum computing. We propose to do this by using an electronic cooling process where relatively energetic (hot) carriers (electrons or holes) quantum mechanically tunnel out of a medium, thereby causing the average electronic temperature in the medium to decrease. The application of this process to realise extremely low temperatures is very new, and we want to greatly improve its efficiency by introducing a new generation semiconductor SiGe into the design of the electronic cooler and, along with it, the well developed silicon processing techniques - so that, ultimately, such coolers can be produced economically and to industrial standards. Coolers will be fabricated around the periphery of a small silicon chip with thermal links to the active device ( payload ) mounted in the centre of the chip. This requires very good thermal design such that the electronic cooler efficiently cools the payload. However, in some cases, it is only necessary to cool the electrons / not the lattice atoms; here SiGe gives a lot of flexibility in controlling the thermal coupling between the electrons and the lattice. Such electronic coolers can operate from a starting temperature of 0.3K, which can be produced by a cryogenic fluid-free closed-cycle helium cryostat, so that a turn-switch technology can be envisaged enabling access to ~10mK working environments. This will be a huge technology step forward, as existing techniques require massive and complex cryogenic fluid-based equipment.During the first phase of the project we will examine several approaches to the realisation of effective electronic cooling, exploiting the wide range of fundamental electronic conditions that can be obtained at very low temperatures in SiGe with its associated metal silicides / thereby enhancing carrier transport and thermoelectric effects. The new coolers will then be tested in two areas of great topical interest, namely radiation detectors and quantum information devices. They could dramatically enhance our ability to detect, for example, the photons that emanate from the earliest black holes, with satellite-based detectors operating at <100mK. And, very significantly, such detectors could revolutionize the fluorescence light detection that is used extensively in biomedical research, enabling advances in our understanding of genetically-based diseases (e.g. cancer) and the workings of a single cell. Furthermore, the computational vista that is opened-up by the quantum computing era requiring qubit devices operating at 10-20mK, is truly awe inspiring. Warwick is co-ordinating the project and has assembled a tightly knit consortium of scientists and engineers with appropriate expertise from four UK universities -Warwick, Cardiff, Leicester and London(Royal Holloway) - and four leading-edge companies, concerned with the development of this technology and the demonstration of its applicability and advantages in two key areas. We are also working closely with Europe's leading centre on mK coolers (Helsinki University of Technology). The UK is exceedingly well positioned to derive benefit from this genuinely new and exciting technology, and this project will sow the seeds for its realisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::70c3f78f318dc2be70f96740923d2f7a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::70c3f78f318dc2be70f96740923d2f7a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2013Partners:VTT , VTT Technical Research Centre of Finland, University of Warwick, University of Warwick, VTT Technical Research Centre of FinlandVTT ,VTT Technical Research Centre of Finland,University of Warwick,University of Warwick,VTT Technical Research Centre of FinlandFunder: UK Research and Innovation Project Code: EP/F040784/1Funder Contribution: 1,069,460 GBPWe intend to develop a new user-friendly technology that would enable small devices to be cooled to exceedingly low temperatures (<100mk). Such a capability will allow diverse and futuristic applications to flourish. These include the detection of black holes, cancer detection and quantum computing. We propose to do this by using an electronic cooling process where relatively energetic (hot) carriers (electrons or holes) quantum mechanically tunnel out of a medium, thereby causing the average electronic temperature in the medium to decrease. The application of this process to realise extremely low temperatures is very new, and we want to greatly improve its efficiency by introducing a new generation semiconductor SiGe into the design of the electronic cooler and, along with it, the well developed silicon processing techniques - so that, ultimately, such coolers can be produced economically and to industrial standards. Coolers will be fabricated around the periphery of a small silicon chip with thermal links to the active device ( payload ) mounted in the centre of the chip. This requires very good thermal design such that the electronic cooler efficiently cools the payload. However, in some cases, it is only necessary to cool the electrons / not the lattice atoms; here SiGe gives a lot of flexibility in controlling the thermal coupling between the electrons and the lattice. Such electronic coolers can operate from a starting temperature of 0.3K, which can be produced by a cryogenic fluid-free closed-cycle helium cryostat, so that a turn-switch technology can be envisaged enabling access to ~10mK working environments. This will be a huge technology step forward, as existing techniques require massive and complex cryogenic fluid-based equipment.During the first phase of the project we will examine several approaches to the realisation of effective electronic cooling, exploiting the wide range of fundamental electronic conditions that can be obtained at very low temperatures in SiGe with its associated metal silicides / thereby enhancing carrier transport and thermoelectric effects. The new coolers will then be tested in two areas of great topical interest, namely radiation detectors and quantum information devices. They could dramatically enhance our ability to detect, for example, the photons that emanate from the earliest black holes, with satellite-based detectors operating at <100mK. And, very significantly, such detectors could revolutionize the fluorescence light detection that is used extensively in biomedical research, enabling advances in our understanding of genetically-based diseases (e.g. cancer) and the workings of a single cell. Furthermore, the computational vista that is opened-up by the quantum computing era requiring qubit devices operating at 10-20mK, is truly awe inspiring. Warwick is co-ordinating the project and has assembled a tightly knit consortium of scientists and engineers with appropriate expertise from four UK universities -Warwick, Cardiff, Leicester and London(Royal Holloway) - and four leading-edge companies, concerned with the development of this technology and the demonstration of its applicability and advantages in two key areas. We are also working closely with Europe's leading centre on mK coolers (Helsinki University of Technology). The UK is exceedingly well positioned to derive benefit from this genuinely new and exciting technology, and this project will sow the seeds for its realisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::eadbe405aa3b723cf3e4851cb303784e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::eadbe405aa3b723cf3e4851cb303784e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2015 - 2017Partners:Imperial College London, Luleå University of Technology, VTT Technical Research Centre of Finland, VTT , Lulea University of Technology +1 partnersImperial College London,Luleå University of Technology,VTT Technical Research Centre of Finland,VTT ,Lulea University of Technology,VTT Technical Research Centre of FinlandFunder: UK Research and Innovation Project Code: EP/M012247/1Funder Contribution: 96,864 GBPIncreasing energy cost, heavy legislative pressures, consumer's demand for environmental friendlier products, carbon neutral technologies and a sustainable future have all triggered fresh interest in research and development of green(er) materials. In this context, cellulose nanofibres are regarded as the prime candidate for the production of high performance sustainable composites. However, the high tensile stiffness (up to 160 GPa) and strength (at least 1 GPa) of a single cellulose nanofibre has yet to be fully exploited in composite materials. Numerous researchers have already manufactured bacterial cellulose (BC)- or nanofibrillated cellulose (NFC)-reinforced polymer composites. Whilst these studies showed the ability of nanocellulose to improve the mechanical performance of polymer matrices, many of these nanocomposites still performed worse than or only equally well compared to PLA, which is one of the highest performing bio-derived polymers that is commercially available at a reasonable price. This proposed project aims to develop the next generation of nanocellulose-reinforced polymers applying green engineering principles to reduce the use of solvents and energy, as well as introduce simple manufacturing concepts to produce sustainable nanocomposites that are truly high performance for high volume structural applications. To achieve this, this project will concentrate on the use of: (i) ultra-low grammage or (ii) high performance cellulose "nanopapers" as the building blocks for sustainable composite materials. It can be anticipated that such truly green and high performance nanofibre composites will find wider applications for instance in the composite, plastic electronics and flexible display industries.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d10b18f495875401cb1d983e6541f21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d10b18f495875401cb1d983e6541f21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2012Partners:Cardiff University, CARDIFF UNIVERSITY, Cardiff University, VTT , VTT Technical Research Centre of Finland +1 partnersCardiff University,CARDIFF UNIVERSITY,Cardiff University,VTT ,VTT Technical Research Centre of Finland,VTT Technical Research Centre of FinlandFunder: UK Research and Innovation Project Code: EP/F040970/1Funder Contribution: 264,198 GBPWe intend to develop a new user-friendly technology that would enable small devices to be cooled to exceedingly low temperatures (<100mk). Such a capability will allow diverse and futuristic applications to flourish. These include the detection of black holes, cancer detection and quantum computing. We propose to do this by using an electronic cooling process where relatively energetic (hot) carriers (electrons or holes) quantum mechanically tunnel out of a medium, thereby causing the average electronic temperature in the medium to decrease. The application of this process to realise extremely low temperatures is very new, and we want to greatly improve its efficiency by introducing a new generation semiconductor SiGe into the design of the electronic cooler and, along with it, the well developed silicon processing techniques - so that, ultimately, such coolers can be produced economically and to industrial standards. Coolers will be fabricated around the periphery of a small silicon chip with thermal links to the active device ( payload ) mounted in the centre of the chip. This requires very good thermal design such that the electronic cooler efficiently cools the payload. However, in some cases, it is only necessary to cool the electrons / not the lattice atoms; here SiGe gives a lot of flexibility in controlling the thermal coupling between the electrons and the lattice. Such electronic coolers can operate from a starting temperature of 0.3K, which can be produced by a cryogenic fluid-free closed-cycle helium cryostat, so that a turn-switch technology can be envisaged enabling access to ~10mK working environments. This will be a huge technology step forward, as existing techniques require massive and complex cryogenic fluid-based equipment.During the first phase of the project we will examine several approaches to the realisation of effective electronic cooling, exploiting the wide range of fundamental electronic conditions that can be obtained at very low temperatures in SiGe with its associated metal silicides / thereby enhancing carrier transport and thermoelectric effects. The new coolers will then be tested in two areas of great topical interest, namely radiation detectors and quantum information devices. They could dramatically enhance our ability to detect, for example, the photons that emanate from the earliest black holes, with satellite-based detectors operating at <100mK. And, very significantly, such detectors could revolutionize the fluorescence light detection that is used extensively in biomedical research, enabling advances in our understanding of genetically-based diseases (e.g. cancer) and the workings of a single cell. Furthermore, the computational vista that is opened-up by the quantum computing era requiring qubit devices operating at 10-20mK, is truly awe inspiring. Warwick is co-ordinating the project and has assembled a tightly knit consortium of scientists and engineers with appropriate expertise from four UK universities -Warwick, Cardiff, Leicester and London(Royal Holloway) - and four leading-edge companies, concerned with the development of this technology and the demonstration of its applicability and advantages in two key areas. We are also working closely with Europe's leading centre on mK coolers (Helsinki University of Technology). The UK is exceedingly well positioned to derive benefit from this genuinely new and exciting technology, and this project will sow the seeds for its realisation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9acc5eda112644bf4b8e2effd66cbbd1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9acc5eda112644bf4b8e2effd66cbbd1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
chevron_right