Ineos (United Kingdom)
Ineos (United Kingdom)
6 Projects, page 1 of 2
assignment_turned_in Project2012 - 2014Partners:Lucite International UK Ltd, Lucite International (United Kingdom), INEOS Technologies UK, NTU, Lucite International +3 partnersLucite International UK Ltd,Lucite International (United Kingdom),INEOS Technologies UK,NTU,Lucite International,University of Nottingham,Ineos (United Kingdom),INEOS TECHNOLOGIES LTDFunder: UK Research and Innovation Project Code: EP/J007978/1Funder Contribution: 100,159 GBPThe plastic products that are so endemic to modern life are made up of long-chain molecules known as polymers. There are many reasons why plastics are so appealing; one of the most important is that the polymer molecules are easily melted and squeezed into shaped moulds in order to produce complex geometries; another reason is that molecules can be aligned during processing to improve material properties along the alignment direction (as is the case, for example, in packaging films, plastic bottles and polymer fibres). In order to make better use of existing materials and to design new polymers for specific applications, engineers need the ability to predict the process conditions that will give particular polymer molecules a predetermined set of material properties within a product. In the past few decades, significant progress has been made in understanding and predicting how polymer molecules of different shapes and lengths respond to flow. Much of this progress has been made possible by studying model polymers, where all molecules are identical in shape and length, or monodisperse. In previous studies, we were able to show that, in these model systems, it is possible to predict a range of solid-state properties of products with molecular orientation, by making use of the rheological, or flow, properties. The main difference between commercial plastics and these model monodisperse polymers is that commercial plastics are made up of a distribution of polymer molecules of different lengths, known as polydisperse. Thus, in order to apply predictive models to commercial plastics, an understanding of how polymer chains of different lengths interact with each other is necessary. This study is aimed at developing models able to predict the mechanical and optical properties of processed polydisperse polymers, applicable to commercial plastics. In order to achieve this, the study will first focus on a special class of polymers known as bimodal blends, which are made up of a mixture of two different monodisperse polymers. By understanding how the different length scales of polymers in bimodal blends interact with one another when they are oriented, it will be possible to make progress in understanding the interactions between the multitude of length scales present in polydisperse commercial plastics. The research will involve an experimental study of the mechanical and optical properties of both bimodal blends and polydisperse commercial polymers that have been subjected to molecular orientation typical of commercial processes. Additionally, a neutron beam will be used to probe orientation in special blends in which one of the length scales is rendered invisible to the beam. The experiments will be used to inform and validate a set of models that can account for the interaction of polymer molecules of different lengths when predicting the solid-state properties that result after a given orientation process. The UK processes 4.8m tonnes of plastics each year, and the UK plastics industry contributed 2.1% of GDP in 2010. Because of comparatively high labour costs in the UK, the industry is focused on niche markets with highly optimised operations, and innovative companies operating at the cutting edge of technology. The research intends to empower the polymer industry to optimise resin composition to processes and products, and to enable solid-state property predictions of processed commercial polymers hitherto not possible. In the long term, this will drive the development of new polymers and new applications of polymers, help to shorten product development times, lead to existing polymers and processes better suited to their application, and help the UK polymer industry to remain a worldwide leader in the field.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9988f5c1cef55c8e780ac804aaac2feb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9988f5c1cef55c8e780ac804aaac2feb&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2024Partners:Centre for Process Innovation, Knowledge Centre for Materials Chemistry, Johnson Matthey (United Kingdom), Johnson Matthey, Ineos (United Kingdom) +8 partnersCentre for Process Innovation,Knowledge Centre for Materials Chemistry,Johnson Matthey (United Kingdom),Johnson Matthey,Ineos (United Kingdom),Centre for Process Innovation CPI (UK),Johnson Matthey Plc,University of Liverpool,University of Liverpool,INEOS Technologies UK,Knowledge Centre for Materials Chemistry,CPI,INEOS TECHNOLOGIES LTDFunder: UK Research and Innovation Project Code: EP/W033283/1Funder Contribution: 249,820 GBPHydrogen gas is predicted to become an important fuel for industry, energy storage medium and an alternative heating fuel. Therefore an urgent need exists to develop ways to generate hydrogen from non-fossil resources, avoiding the generation of carbon dioxide as a by-product. Zero carbon hydrogen can be generated by the electrolysis of water using renewable power with oxygen being the only other product. This is a promising approach, providing a way to increase market penetration of renewable power by providing a long-term energy store which overcomes issues relating to intermittency of supply. The current leading water electrolysis technology operate in acid. Whilst the hydrogen evolution reaction is efficient in acid the oxygen evolution reaction is not. For acid electrolysis the only active catalysts for oxygen production have a very low availability and there is insufficient to meet predicted demand. An alternative is to carry out electrolysis in base, whilst a range of available oxygen evolution catalysts exist, the efficiency of the hydrogen evolution catalyst is decreased. To deliver electrolysis at a global scale alternative technologies are needed. From an electrocatalyst perspective the ideal electrolyser would run the hydrogen evolution reaction in acid and the oxygen evolution reaction in base. This would make use of the existing, scalable electrocatalysts. Bipolar membrane electrolysers achieve this. When the bipolar membrane is reverse biased sufficiently water within it dissociates and protons are transported towards the hydrogen evolution electrode, generating an acid environment and hydroxide to the oxygen evolution site, generating a basic environment. Bipolar membrane electrolysers represent a third, but massively under-researched, way to generate zero-carbon H2 by electrolysis and importantly they can be delivered at the scale required. But to be a viable technology large improvements in efficiency and stability of the bipolar membrane are needed. Historically issues relating to water transport across the membrane, which lead to dehydration, and also delamination have caused instabilities but recent studies have shown that these can be largely addressed by careful control of the polymer membrane thickness. What has not been solved is the large losses associated with the low efficiency of water dissociation within the bipolar membrane. Addition of catalyst layers into the bipolar membrane is a promising approach but more research is urgently needed. Here we will develop new water dissociation interfaces within the membrane structure with metal oxide catalysts that are optimised for the local pH environment to impart both high levels of activity and stability. Our proposed innovative interface design will explore how to maximise the local electric field and the catalytic enhancement of water dissociation whilst minimising resistance losses in the membrane, to deliver a step change in water dissociation activity and demonstrate the viability of zero carbon hydrogen by bipolar membrane electrolysis.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9ac691446fe162953f8fbf8e0970150c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9ac691446fe162953f8fbf8e0970150c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2021Partners:Lotte Chemical UK Ltd, Air Products (United Kingdom), Tees Valley Unlimited, Lotte Chemical UK Ltd, Ineos (United Kingdom) +12 partnersLotte Chemical UK Ltd,Air Products (United Kingdom),Tees Valley Unlimited,Lotte Chemical UK Ltd,Ineos (United Kingdom),Air Products & Chemicals Plc,University of Edinburgh,Tees Valley Unlimited,Howden (United Kingdom),Diageo plc,INEOS Technologies UK,Howden Group Technology,Air Products (United Kingdom),Diageo (United Kingdom),SCOTTISH ENVIRONMENT PROTECTION AGENCY,INEOS TECHNOLOGIES LTD,SEPAFunder: UK Research and Innovation Project Code: EP/N024613/1Funder Contribution: 860,547 GBPThe 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. This target will require nearly complete decarbonisation of large and medium scale emitters. While the power sector has the option of shifting to low carbon systems (renewables and nuclear), for industrial emissions, which will account for 45% of global emissions, the solution has to be based on developing more efficient processes and a viable carbon capture and storage (CCS) infrastructure. The government recognises also that "there are some industrial processes which, by virtue of the chemical reactions required for production, will continue to emit CO2", ie CCS is the only option to tackle these emissions. In order for the UK industry to maintain its competitiveness and meet these stringent requirements new processes are needed which reduce the cost of carbon capture, typically more than 60% of the overall cost of CCS. Research challenge - The key challenges in carbon capture from industry lie in the wide range of conditions (temperature, pressure, composition) and scale of the processes encountered in industrial applications. For carbon capture from industrial sources the drivers and mechanisms to achieve emissions reductions will be very different from those of the power generation industry. It is important to consider that for example the food and drinks industry is striving to reduce the carbon footprint of the products we purchase due to pressures from consumers. The practical challenge and the real long term opportunity for R&D are solutions for medium to small scale sources. In developing this project we have collaborated with several industrial colleagues to identify a broad range case studies to be investigated. As an example of low CO2 concentration systems we have identified a medium sized industry: Lotte Chemicals in Redcar, manufacturer of PET products primarily for the packaging of food and drinks. The plant has gas fired generators that produce 3500 kg/hr of CO2 each at approximately 7%. The emissions from the generators are equivalent to 1/50th of a 500 MW gas fired power plant. The challenge is to intensify the efficiency of the carbon capture units by reducing cycle times and increasing the working capacity of the adsorbents. To tackle this challenge we will develop novel amine supporting porous carbons housed in a rotary wheel adsorber. To maximise the volume available for the adsorbent we will consider direct electrical heating, thus eliminating the need for heat transfer surfaces and introducing added flexibility in case steam is not available on site. As an example of high CO2 concentrations we will collaborate with Air Products. The CO2 capture process will be designed around the steam methane reformer used to generate hydrogen. The tail gas from this system contains 45% v/v CO2. The base case will be for a generator housed in a shipping container. By developing a corresponding carbon capture module this can lead to a system that can produce clean H2 from natural gas or shale gas, providing a flexible low carbon source of H2 or fuel for industrial applications. Rapid cycle adsorption based processes will be developed to drive down costs by arriving flexible systems with small footprints for a range of applications and that can lead to mass-production of modular units. We will carry out an ambitious programme of work that will address both materials and process development for carbon capture from industrial sources.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02d56dd2fd160f8ee6569f712d60d0b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02d56dd2fd160f8ee6569f712d60d0b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2028Partners:Centrica (United Kingdom), Western Gateway, GKN Aerospace - Filton, Siemens Energy Ltd, HIGH VALUE MANUFACTURING CATAPULT +23 partnersCentrica (United Kingdom),Western Gateway,GKN Aerospace - Filton,Siemens Energy Ltd,HIGH VALUE MANUFACTURING CATAPULT,Health and Safety Executive (HSE),Glass Futures Ltd,West of England Combined Authority,CENTRICA PLC,INEOS TECHNOLOGIES LTD,UK Energy Research Centre,Wales & West Utilities,Fluor Limited,University of Bath,National Nuclear Laboratory (NNL),Supercritical Solutions Ltd,Angel Trains,Ceres Power (United Kingdom),Johnson Matthey (United Kingdom),Health and Safety Executive,UK Hydrogen and Fuel Cell Association,High Value Manufacturing Catapult,NATIONAL GAS TRANSMISSION PLC,SP Energy Networks,Scottish Hydrogen& Fuel Cell Association,Johnson Matthey,Ineos (United Kingdom),Schlumberger (United Kingdom)Funder: UK Research and Innovation Project Code: EP/X038963/1Funder Contribution: 10,714,400 GBPA thriving, low carbon hydrogen sector is essential for the UK's plans to build back better with a cleaner, greener energy system. Hydrogen has the potential to reduce emissions in some of the highest-emitting and most difficult to decarbonise areas of the economy, which must be transformed rapidly to meet Net Zero targets. To achieve this, large amounts of low carbon hydrogen and alternative liquid fuels will be needed. These must be stored and transported to their point of use. There remain significant research challenges across the whole value chain and researchers, industry and policy makers must work collaboratively and across disciplines to drive forward large-scale implementation of hydrogen and alternative liquid fuels as energy vectors and feedstocks. The flagship UK-HyRES hub will identify, prioritise and deliver solutions to research challenges that must be overcome for widespread adoption of hydrogen and alternative liquid fuels. It will be a focus for the UK research community, both those who are already involved in hydrogen research and those who must be involved in future. The UK-HyRES hub will provide a network and collaboration platform for fundamental research, requiring the combined efforts of scientists, engineers, social scientists and others. The UK-HyRES team will coordinate a national, interdisciplinary programme of research to ensure a pipeline of projects that can deliver commercialisation of hydrogen and alternative liquid fuel technologies that are safe, acceptable, and environmentally, economically and socially sustainable, de-coupling fossil fuels from our energy system and delivering greener energy. We intend that, within its five-year funding window and beyond, UK-HyRES will be recognised internationally as a global centre of excellence and impact in hydrogen and alternative liquid fuel research.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02a11b30186e2ca88fff1c6bd94eff55&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02a11b30186e2ca88fff1c6bd94eff55&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2024Partners:Hybrid Catalysis (Netherlands), University of Leuven, Eastman Chemical Ltd (inc), James Hutton Institute, University of Leuven +42 partnersHybrid Catalysis (Netherlands),University of Leuven,Eastman Chemical Ltd (inc),James Hutton Institute,University of Leuven,Marks and Clerk LLP,Eastman Chemical Company (United States),University of Rome Tor Vergata,University of Washington,University of Virginia,DSM Innovative Synthesis B. V.,Bayer AG,Ineos (United Kingdom),Netherlands Institute for Catalysis Research,Dr. Reddy's Laboratories (United Kingdom),Royal Netherlands Academy Arts Sci KNAW,Leipzig University,Diamond Light Source,Marks and Clerk LLP,Sasol Technology Research Laboratory,King Abdullah University of Sc and Tech,King Abdullah University of Science and Technology,Hybrid Catalysis (Netherlands),UVA,University of St Andrews,University of St Andrews,TUM,TU/e,Sasol Technology Research Laboratory,RWTH,James Hutton Institute,Bayer (Germany),Dr Reddy's Laboratories UK Ltd,INEOS TECHNOLOGIES LTD,THE JAMES HUTTON INSTITUTE,Leibniz Institute for Catalysis,UH,Leibniz-Institut f³r Katalyse,Leibniz Institute for Catalysis,Saudi Arabia Basic Industries (Saudi Arabia),INEOS Technologies UK,KU Leuven,SABIC (Saudi Basic Industries Corp),Diamond Light Source,Netherlands Institute for Catalysis Rese,Eindhoven University of Technology,Royal Netherlands Academy of Arts and SciencesFunder: UK Research and Innovation Project Code: EP/L016419/1Funder Contribution: 4,437,580 GBPThe future sustainable production of bulk and fine chemicals is an ever-increasing global challenge that requires a transformative scientific approach. We must develop new ways of efficiently exploiting valuable fossil-fuel resources and tools to exploit renewable resources such as CO2 and lignin. Catalytic methods, the heart of this CDT, are key to these transformations, offering the single most powerful and broadly applied technology for the reduction of energy demand, cost, environmental impact and toxicity. This CDT will drive forward a sustainable and resource-rich culture. This CDT in Critical Resource Catalysis (CRITICAT) combines the catalysis research collective of St. Andrews, Edinburgh, and Heriot-Watt Universities to create a new and unique opportunity in PhD training and research. CRITICAT will allow 80+ bright minds to be challenged in a comprehensive and state-of-the-art PhD training regime in the broad remit of catalytic science, transforming them into future scientific researchers, business leaders, entrepreneurs, and policy makers. These will be people who make a difference in a technologically-led society. Our critical mass in critical resource catalysis will accelerate training, discovery, understanding, and exploitation within catalytic chemistry. We will focus our efforts on the future of catalysis, driving new advances for environmentally sustainable economic growth and underpinning current growth in the UK chemicals sector. The economic impact in this area is huge: in 2010, an EPSRC/RSC jointly commissioned independent report showed that the UK's "upstream" chemicals industry and "downstream" chemistry-using sector contributed a combined total of £258 billion in added value to the economy in 2007, equivalent to 21% of UK GDP, and supported over 6 million UK jobs. Sustained investment in PhD training within this area will provide the highest quality employees for this sector. The CRITICAT PhD students will be exposed to a unique training and research environment. Extensive taught courses (delivered by CRITICAT PIs and industrial collaborators) will offer fundamental insight into homogeneous, heterogeneous, industrial and biocatalysis coupled with engineering concepts and essential techniques to showcase cutting-edge catalysis. The CRITICAT partners will develop these core courses into a foundational textbook for graduate training across catalysis using critical resources as its cornerstone that will serve as a legacy for this programme. We will expand our pedagogical innovation to all PhD graduate students at our three partner universities, providing region-wide enhanced academic provision. Continuous growth and peer-to-peer learning throughout their research efforts will create graduates who are keen to continue learning. They will be equipped with business, management, entrepreneurial and communication skills synergistic with core science knowledge and research undertakings. In this way, we will ensure that our CRITICAT students will be able to innovate, think critically, and adapt to change in any technological career. We will prepare the next generation of scientists, managers and innovators for key roles in our future society. To support this broad developmental approach, industry and business leaders will contribute widely to CRITICAT. Industries will (i) provide scientific ideas and objectives, (ii) deliver new competencies through targeted courses ranging from entrepreneurship to intellectual property rights and (iii) provide laboratory placements to consolidate learning and exploit any scientific advances. Furthermore, our extensive collaboration with leading international academic institutions will engender PhD student mobility, expand impact and allow experiential learning. We will build on our existing public engagement frameworks to enable our students to deliver their research, impact and scientific understanding to a wide audience, exciting others and driving new scientific policy.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5b35c63ac3edba24d90aaf1f0eea12c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::5b35c63ac3edba24d90aaf1f0eea12c6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right