Powered by OpenAIRE graph

VBC Group

7 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: ST/K001337/1
    Funder Contribution: 3,001,190 GBP

    We are living in an exceptional age for discoveries in particle physics and particle astrophysics with potential for producing step changes in understanding of the composition of matter and the structure of the Universe. The research we plan with this consolidated grant in particle physics and particle astrophysics at Sheffield is at the core of these discoveries. Firstly, we appear to be near answering the fundamental question of what gives particles mass. In this field Sheffield will continue to play a leading role in the ATLAS experiment that now looks to be on the verge of solving the mystery by detecting the famous Higgs Boson. Our ATLAS work, where we are currently the only UK group heavily involved in the flagship 4-lepton channel Higgs search, will aim to confirm the first evidence for excess reported in Dec. 2011. Simultaneously work will continue in the equally fundamental hunt to find supersymmetric particles and on radiation modeling and detector tests for the ATLAS upgrade anticipated as the next experiment. We currently provide the UK spokesman for ATLAS. A second recent major advance, made by the T2K experiment in 2011, reports evidence for a non-zero third neutrino mixing angle. This potentially unlocks progress to experiments in so-called charge-parity (CP) violation to answer the mystery of why the Universe contains matter and virtually no anti-matter. Our T2K and neutrino group will focus on contributing further analysis to confirm the new results but also, using our membership of the LBNO and LBNE collaborations, progress key new detector technology towards a next generation long baseline neutrino experiment to see CP violation. For this our focus will be with liquid argon technology, our pioneering work on electroluminescence light readout for that, and our simulation work on backgrounds from muons. The latter is key also to our on-going work towards an experiment to see if the proton decays, an issue at the core of understanding Grand Unified Theories of physics. Closely related and vital for our neutrino programme is continued participation in SNO+, aimed at understanding solar neutrinos, and the MICE experiment with its related R&D on high power particle beam targets for future neutrino beams. Technological developments recently led to significant improvement in sensitivity of detectors to WIMP dark matter with key contributions from the Sheffield group towards EDELWEISS and DRIFT. Exploiting our leadership in background mitigation strategy, calibration and data analysis, our future work will concentrate on EDELWEISS operation and data analysis, as well as on developments towards ton-scale cryogenic experiment EURECA. The group is also uniquely well positioned to contribute through new work aiming to see, or exclude, a definitive galactic signature for the claimed low mass WIMP events. Our pioneering work on directional WIMP detectors will see a new experiment installed at the UK's Boulby underground site, DRIFTIIe, while our continued analysis of data from DM-ICE17 at the Antarctic South Pole, for which we supplied the NaI detectors, will seek an annual modulation galactic signature and inform design of a new experiment there planned for 2013. Our generic detector R&D is vital to underpinning the group, closely related to a vigorous knowledge exchange programme that now includes funded projects involving 15 different companies. Highlight activity here will include development of particle tracking technology in liquid argon relevant to neutrino physics and astrophysics, new gas-based directional neutron programmes with relevance for homeland security, and new muon veto R&D. The latter links to our KE programme on CO2 underground storage technology. We plan first deployment of test detectors at 760m depth by 2013. This is part of the group's contribution to key social agendas in climate change and crime prevention.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E001874/1
    Funder Contribution: 9,770,800 GBP

    The Cranfield IMRC vision is to grow the existing world class research activity through the development and interaction between:Manufacturing Technologies and Product/Service Systems that move UK manufacturing up the value chain to provide high added value manufacturing business opportunities.This research vision builds on the existing strengths and expertise at Cranfield and is complementary to the activities at other IMRCs. It represents a unique combination of manufacturing research skills and resource that will address key aspects of the UK's future manufacturing needs. The research is multi-disciplinary and cross-sectoral and is designed to promote knowledge transfer between sectors. To realise this vision the Cranfield IMRC has two interdependent strategic aims which will be pursued simultaneously:1.To produce world/beating process and product technologies in the areas of precision engineering and materials processing.2.To enable the creation and exploitation of these technologies within the context of service/based competitive strategies.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022635/1
    Funder Contribution: 5,719,620 GBP

    Metallic materials are indispensable to modern human life. From everyday items such as aluminium drinks cans, to advanced applications like jet engine turbine blades and the pressure vessels of nuclear reactors, the positive social impact of metals is difficult to overstate. Yet despite major advances in our understanding of the manufacture and properties of metals, significant challenges remain. Constructing the next generation of electric cars will require improved lightweight alloys and joining technologies. Development of fusion power plants, which will provide near-limitless carbon-free energy, will require the development of advanced alloy systems capable surviving the extreme environments found inside reactors. For the next generation of hypersonic air and space vehicles, we require propulsion systems capable of over Mach 5. Alloys will need to survive 1800 degrees Celsius, be made into complex shapes, and be joined without losing any of their properties. Overcoming these challenges by improving existing metallic materials, developing new ones, and adapting manufacturing methods, then the benefits will be substantial. Now is a particularly exciting time to be involved in metallurgical research and manufacturing. This is not only because of the kinds of compelling challenges specified above, but also because of the opportunities afforded by the emergence of new advanced manufacturing technologies. Innovative techniques such as 3D printing are enabling novel shapes and design concepts to be realised, whilst the latest solid-state processes allow for the design and production of bespoke alloys that cannot be made by conventional liquid casting techniques. Industry 4.0, or the fourth industrial revolution, provides opportunities to optimise emerging and established technologies through the use of material and process data and advanced computational techniques. In order to fully exploit these opportunities, we need to understand the complex relationships between the processing, structure, properties and performance of materials, and link these to the digital manufacturing environment. To deliver the factories of tomorrow, which will be critical to the future strength of UK plc and the wider economy, industry will require more specialists with a thorough understanding of metallic materials science and engineering. These metallurgists should also have the professional and technical leadership skills to exploit emerging computational and data-driven approaches, and be well versed in equality and diversity best practice, such that they can effect positive changes in workplace culture. The EPSRC Centre for Doctoral Training in Advanced Metallic Systems will help to deliver these specialists, currently in short supply, by recruiting and training cohorts of high level scientists and engineers. Through collaboration with industry, and a comprehensive training in fundamental materials science and computational methods, professional skills, and equality and diversity best practice, our graduates will be equipped to become future research leaders and captains of industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/I004262/1
    Funder Contribution: 326,423 GBP

    The proposed knowledge exchange is to transfer R&D into automatically joining by welding ultra thin wall advanced aerospace alloy small diameter tubing. Sourced directly from STFC funded research into low mass cooling systems; the technique, processes and knowledge will enhance modern aerospace and hybrid vehicle turbine manufacture by facilitating the removal of heavy fuel and cooling line connectors currently adopted by manufacturers. Reliable high strength welded joints are only achievable on thin wall aerospace alloy tubes through automated processes, all currently very costly and do not allow for simple in-situ installation of components. Reduction in the use of connectors in turn will allow for more compact turbine design and higher reliability. Savings made by the enhanced reliability of light weight connector less fuel and cooling systems will allow the efficiency gains sought after by gas turbine market consumers.

    more_vert
  • Funder: UK Research and Innovation Project Code: ST/S000747/1
    Funder Contribution: 2,427,600 GBP

    "What is the Universe made of, and why?" Sheffield's HEP programme aims to address this fundamental question. There are two problems here: about 5/6 of the matter in the Universe seems to be an as yet undiscovered particle (dark matter), and the remaining 1/6 is all matter - not the 50:50 matter-antimatter mix we make in laboratories. We search for the dark matter particle in two ways: at the energy frontier, by seeking to detect new particles created by the high-energy proton-proton collisions of the LHC at CERN, and in direct searches, attempting to observe these particles in the Galaxy itself. The theory of supersymmetry, which predicts a whole set of particles related to, but more massive than, the known particles of the Standard Model (SM), offers a candidate dark matter particle. If supersymmetric particles can be made at the LHC, they should be detected in ATLAS. Our programme searches specifically for new Higgs bosons and for particles related to the SM quarks and gluons. At ATLAS, we also study SM processes involving the force carriers of the weak interaction, probing our understanding of the SM. Looking to the future, we are contributing essential work to the upgrade of the ATLAS experiment required to take full advantage of higher event rates in future running of the LHC. Most of the matter in our Galaxy is dark matter. In the LZ experiment, we search for evidence of dark matter colliding with Xe atoms in the experiment and causing them to recoil. This experiment will be the most sensitive dark matter detector ever constructed. Understanding possible background - non-dark-matter - events is critical to this, and we have world leading expertise in this field. In addition, we are leading the development of directional dark matter detectors, which will be vital in proving that any candidate signal really does come from the Galaxy and not the Earth. We are also the only UK group involved in the search for axions: another possible type of dark matter particle which cannot be detected at the LHC or in standard dark matter experiments. Why is the matter in the Universe all matter, not antimatter? The answer to this question must lie in subtle differences between particles and antiparticles, an effect called CP violation. The CP violating effects so far observed are not nearly large enough to create the Universe we see. The most likely source for more CP violation is in the interactions of neutrinos. A key observation is that neutrinos have mass, and that different types of neutrinos can interchange their identities in flight. The T2K experiment has made measurements of this, and has detected tantalising hints of CP violation. We plan to build on this work, both in running experiments (T2K and SBND) and in designing the next generation of neutrino experiments which will have much greater sensitivity. We have developed tools to assist the neutrino community in comparing results and improving our understanding of how neutrinos interact. Our access to Boulby Mine provides an invaluable low-background laboratory for testing materials and detector prototypes. Last but not least, we seek to apply HEP technology to industry and to solving global problems. We are using techniques developed for ATLAS to contribute to the development of robotics and to deal with highly radioactive environments such as Chernobyl. We are designing muon detectors to search for nuclear contraband and monitor volcanoes. Our signal processing techniques are being applied to improving medical imaging for heart patients. Our expertise in water Cherenkov neutrino detection is being exploited in an experiment designed to monitor compliance with nuclear non-proliferation treaties. All of this work builds on our STFC core programme to benefit the wider world.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.