Cambridge Crystallographic Data Centre
Cambridge Crystallographic Data Centre
26 Projects, page 1 of 6
assignment_turned_in Project2014 - 2023Partners:Shell Research UK, Shell Global Solutions UK, Accelrys Limited, UNILEVER U.K. CENTRAL RESOURCES LIMITED, Janssen Pharmaceutical +36 partnersShell Research UK,Shell Global Solutions UK,Accelrys Limited,UNILEVER U.K. CENTRAL RESOURCES LIMITED,Janssen Pharmaceutical,Tata Steel Packaging,AWE,Shell Global Solutions UK,Royal Society of Chemistry,Royal Society of Chemistry Publishing,NSG Holding (Europe) Limited,Janssen Pharmaceutica NV,ASTRAZENECA UK LIMITED,Granta Design (United Kingdom),Orica Australia,SKF Group (UK),AWE plc,Orica Australia,CCDC,BP (International),Infochem Computer Services Ltd,SCR,Astrazeneca,Lhasa Limited,Royal Society of Chemistry,SKF Group,Granta Design Ltd,UNIVERSITY OF CAMBRIDGE,University of Cambridge,BP British Petroleum,Cambridge Integrated Knowledge Centre,Tata Steel Packaging,Dassault Systèmes (United Kingdom),Accelrys Limited,NSG Group (UK),Schlumberger Cambridge Research Limited,Cambridge Crystallographic Data Centre,AstraZeneca plc,Infochem Computer Services Ltd,Unilever (United Kingdom),Unilever UK Central Resources LtdFunder: UK Research and Innovation Project Code: EP/L015552/1Funder Contribution: 4,544,990 GBPMoore's Law states that the number of active components on an microchip doubles every 18 months. Variants of this Law can be applied to many measures of computer performance, such as memory and hard disk capacity, and to reductions in the cost of computations. Remarkably, Moore's Law has applied for over 50 years during which time computer speeds have increased by a factor of more than 1 billion! This remarkable rise of computational power has affected all of our lives in profound ways, through the widespread usage of computers, the internet and portable electronic devices, such as smartphones and tablets. Unfortunately, Moore's Law is not a fundamental law of nature, and sustaining this extraordinary rate of progress requires continuous hard work and investment in new technologies most of which relate to advances in our understanding and ability to control the properties of materials. Computer software plays an important role in enhancing computational performance and in many cases it has been found that for every factor of 10 increase in computational performance achieved by faster hardware, improved software has further increased computational performance by a factor of 100. Furthermore, improved software is also essential for extending the range of physical properties and processes which can be studied computationally. Our EPSRC Centre for Doctoral Training in Computational Methods for Materials Science aims to provide training in numerical methods and modern software development techniques so that the students in the CDT are capable of developing innovative new software which can be used, for instance, to help design new materials and understand the complex processes that occur in materials. The UK, and in particular Cambridge, has been a pioneer in both software and hardware since the earliest programmable computers, and through this strategic investment we aim to ensure that this lead is sustained well into the future.
more_vert assignment_turned_in Project2019 - 2028Partners:ASTRAZENECA UK LIMITED, e-Therapeutics Plc, University of Oxford, Perspectum Diagnostics, Astrazeneca +49 partnersASTRAZENECA UK LIMITED,e-Therapeutics Plc,University of Oxford,Perspectum Diagnostics,Astrazeneca,Mirada Medical UK,Diamond Light Source,Moffitt Cancer Centre,e-Therapeutics plc,Unilever (United Kingdom),Inhibox Ltd,CCDC,Ex Scientia Ltd,Elsevier UK,Oxford University Press,Cambridge Crystallographic Data Centre,Diamond Light Source,SimOmics,Microsoft Research Ltd,Oxford University Press,CANCER RESEARCH UK,MEDISIEVE,LifeArc,Lurtis,Novo Nordisk Research Centre,Zegami,Cancer Research UK,MICROSOFT RESEARCH LIMITED,Lhasa Limited,Mirada Medical UK,Oxford Drug Design,Zegami,Simomics,Roche (Switzerland),Novo Nordisk Research Centre,Imperial Cancer Research Fund,UNILEVER U.K. CENTRAL RESOURCES LIMITED,MedImmune Ltd,MRC,Oxford Drug Design,GE Aviation,GE Healthcare,BenevolentAI,Exscientia Limited,AstraZeneca plc,Elsevier UK,BenevolentAI Bio Ltd,Moffitt Cancer Centre,UCB Pharma (Belgium),Perspectum Diagnostics,UCB Pharma,GE Healthcare,Lurtis,Unilever Corporate ResearchFunder: UK Research and Innovation Project Code: EP/S024093/1Funder Contribution: 5,637,180 GBPBuilding upon our existing flagship industry-linked EPSRC & MRC CDT in Systems Approaches to Biomedical Science (SABS), the new EPSRC CDT in Sustainable Approaches to Biomedical Science: Responsible and Reproducible Research - SABS:R^3 - will train a further five cohorts, each of 15 students, in cutting-edge systems approaches to biomedical research and, uniquely within the UK, in advanced practices in software engineering. Our renewed goal is to bring about a transformation of the research culture in computational biomedical science. Computational methods are now at the heart of biomedical research. From the simulation of the behaviour of complex systems, through the design and automation of laboratory experiments, to the analysis of both small and large-scale data, well-engineered software has proved capable of transforming biomedical science. Biomedical science is therefore dependent as never before on research software. Industries reliant on this continued innovation in biomedical science play a critical role in the UK economy. The biopharmaceutical and medical technology industrial sectors alone generate an annual turnover of over £63 billion and employ 233,000 scientists and staff. In his foreword to the 2017 Life Sciences Industrial Strategy, Sir John Bell noted that, "The global life sciences industry is expected to reach >$2 trillion in gross value by 2023... there are few, if any, sectors more important to support as part of the industrial strategy." The report identifies the need to provide training in skills in "informatics, computational, mathematical and statistics areas" as being of major concern for the life sciences industry. Over the last 9 years, the existing SABS CDT has been working with its consortium of now 22 industrial and institutional partners to meet these training needs. Over this same period, continued advances in information technology have accelerated the shift in the biomedical research landscape in an increasingly quantitative and predictive direction. As a result, computational and hence software-driven approaches now underpin all aspects of the research pipeline. In spite of this central importance, the development of research software is typically a by-product of the research process, with the research publication being the primary output. Research software is typically not made available to the research community, or even to peer reviewers, and therefore cannot be verified. Vast amounts of research time is lost (usually by PhD students with no formal training in software development) in re-implementing already-existing solutions from the literature. Even if successful, the re-implemented software is again not released to the community, and the cycle repeats. No consideration is made of the huge benefits of model verification, re-use, extension, and maintainability, nor of the implications for the reproducibility of the published research. Progress in biomedical science is thus impeded, with knock-on effects into clinical translation and knowledge transfer into industry. There is therefore an urgent need for a radically different approach. The SABS:R^3 CDT will build on the existing SABS Programme to equip a new generation of biomedical research scientists with not only the knowledge and methods necessary to take a quantitative and interdisciplinary approach, but also with advanced software engineering skills. By embedding this strong focus on sustainable and open computational methods, together with responsible and reproducible approaches, into all aspects of the new programme, our computationally-literate scientists will be equipped to act as ambassadors to bring about a transformation of biomedical research.
more_vert assignment_turned_in Project2019 - 2027Partners:University of Queensland, State University of Campinas, University of Graz, University of North Dakota, Perceptive Engineering Limited +50 partnersUniversity of Queensland,State University of Campinas,University of Graz,University of North Dakota,Perceptive Engineering Limited,CCDC,Swagelok Manchester,Innospec Environmental Ltd,The University of Queensland,Keracol Limited,,Cambridge Crystallographic Data Centre,Swagelok Manchester,University of Leeds,ASTRAZENECA UK LIMITED,UK-CPI (dup'e),Venator,Campinas State University,Pfizer,University of Queensland,Syngenta Ltd,Xeros Ltd,Biome Technologies,Syngenta Ltd,Biome Technologies,SouthernUniversity of Science&Technology,Universidade Estadual de Campinas,Keracol Limited,,Sterling Pharma Solutions Ltd.,Pfizer,Perceptive Engineering Limited,South Uni of Sci and Tech of China SUST,Infineum UK,Diamond Light Source,Graz University,Max-Planck-Gymnasium,Sterling Pharma Solutions Ltd.,Britest Limited,Croda (United Kingdom),Astrazeneca,Croda International Plc,Procter & Gamble Limited (P&G UK),BRITEST Ltd,PROCTER & GAMBLE TECHNICAL CENTRES LIMITED,AstraZeneca plc,Max Planck Institutes,Venator,Xeros Ltd,Diamond Light Source,UK-CPI,Infineum UK Ltd,University of Leeds,Innospec (United Kingdom),CRODA INTERNATIONAL PLC,University of North Dakota,Innospec Environmental LtdFunder: UK Research and Innovation Project Code: EP/S022473/1Funder Contribution: 5,345,840 GBPThe CDT in Molecules to Product addresses an overarching concern articulated by industry operating in the area of complex chemical products. It centres on the lack of a pipeline of doctoral graduates who understand the cross-scale issues that need to be addressed within the chemicals continuum. Translating their concern into a vision, the focus of the CDT is to train a new generation of research leaders with the skills and expertise to navigate the journey from a selected molecule or molecular system through to the final product that delivers the desired structure and required performance. To address this vision, three inter-related Themes form the foundation of the CDT - Product Functionalisation and Performance, Product Characterisation, and Process Modelling between Scales. More specifically, industry has identified a real need to recruit PGR graduates with the interdisciplinary skills covered by the CDT research and training programme. As future leaders they will be instrumental in delivering enhanced process and product understanding, and hence the manufacture of a desired end effect such as taste, dissolution or stability. For example, if industry is better informed regarding the effect of the manufacturing process on existing products, can the process be made more efficient and cost effective through identifying what changes can be made to the current process? Alternatively, if there is an enhanced understanding of the effect of raw materials, could stages in the process be removed, i.e. are some stages simply historical and not needed. For radically new products that have been developed, is it possible through characterisation techniques to understand (i) the role/effect of each component/raw material on the final product; and (ii) how the product structure is impacted by the process conditions both chemical and mechanical? Finally, can predictive models be developed to realise effective scale up? Such a focus will assist industry to mitigate against wasted development time and costs allowing them to focus on products and processes where the risk of failure is reduced. Although the ethos of the CDT embraces a wide range of sectors, it will focus primarily on companies within speciality chemicals, home and personal care, fast moving consumer goods, food and beverage, and pharma/biopharma sectors. The focus of the CDT is not singular to technical challenges: a core element will be to incorporate the concept of 'Education for Innovation' as described in The Royal Academy of Engineering Report, 'Educating engineers to drive the innovation economy'. This will be facilitated through the inclusion of innovation and enterprise as key strands within the research training programme. Through the combination of technical, entrepreneurial and business skills, the PGR students will have a unique set of skills that will set them apart from their peers and ultimately become the next generation of leaders in industry/academia. The training and research agendas are dependent on strong engagement with multi-national companies, SMEs, start-ups and stakeholders. Core input includes the offering, and supervision of research projects; hosting of students on site for a minimum period of 3 months; the provision of mentoring to students; engagement with the training through the shaping and delivery of modules and the provision of in-house courses. Additional to this will be, where relevant, access to materials and products that form the basis of projects, the provision of software, access to on-site equipment and the loan of equipment. In summary, the vision underpinning the CDT is too big and complex to be tackled through individual PhD projects - it is only through bringing academia and industry together from across multiple disciplines that a solution will be achievable. The CDT structure is the only route to addressing the overarching vision in a structured manner to realise delivery of the new approach to product development.
more_vert assignment_turned_in Project2024 - 2032Partners:Ceres Power Ltd, Beckers Group (UK), Croda Europe Ltd, Chemspeed Technologies AG, Liverpool City Region Combined Authority +30 partnersCeres Power Ltd,Beckers Group (UK),Croda Europe Ltd,Chemspeed Technologies AG,Liverpool City Region Combined Authority,QinetiQ,Johnson Matthey,CPI,Bristol Myers Squibb (UK),University of Liverpool,Diamond Light Source,Walgreen Alliance Boots (UK),Cambridge Crystallographic Data Centre,Williams F1,CRISMAT-ISMRA,University of California, Santa Barbara,IBM UNITED KINGDOM LIMITED,Liverpool ChiroChem Ltd,University of Toronto, Canada,Henry Royce Institute,STFC Swindon Office,Victrex plc,Yordas Group,NSG Group (UK),Gearu Ltd.,Solvay Group (UK),Labman Automation Ltd,Innospec Environmental Ltd,Knowledge Centre for Materials Chemistry,Synthomer Ltd,Unilever,ASTRAZENECA UK LIMITED,Polymer Mimetics Ltd,MPI for Chemical Physics of Solids,Inovo RoboticsFunder: UK Research and Innovation Project Code: EP/Y03502X/1Funder Contribution: 7,266,920 GBPWe will train a cohort of students at the interface between the physical and computer sciences to drive the critically needed implementation of digital and automated methods in chemistry and materials. Through such training, each student will develop a common language across the areas of automation, AI, synthesis, characterization and modelling, preparing them to become both leader and team player in this evolving and multifaceted research landscape. The lack of skilled individuals is one of the main obstacles to unlocking the potential of digital materials research. This is demonstrated by the enthusiastic response toward this proposal from our industrial partners, who span sectors and sizes: already 35 are involved and we have already received cash support corresponding to over 27 full studentships. This proposal will deliver the EPRSC strategic priority "Physical and Mathematical Sciences Powerhouse" by training in "discovery research in areas of potential high reward, connecting with industry and other partners to accelerate translation in areas such as catalysis, digital chemistry and materials discovery." The CDT training programme is based on a unique physical and intellectual infrastructure at the University of Liverpool. The Materials Innovation Factory (MIF) was established to deliver the vision of digital materials research in partnership with industry: it now co-locates over 100 industrial scientists from more than 15 companies with over 200 academic researchers. Since 2017, academics and industrial researchers from physical sciences, engineering and computer sciences have co-developed the intellectual environment, infrastructure and expertise to train scientists across these areas. To date, more than 40 PhD projects have been co-designed with and sponsored by our core industrial partners in the areas of organic, inorganic, hybrid, composite and formulated materials. Through this process, we have developed bespoke training in data science, AI, robotics, leadership, and computational methods. Now, this activity must be grown scalably and sustainably to match the rapidly increasing demand from our core partners and beyond. This CDT proposal, developed from our previous experience, allows us to significantly extend into new sectors and to a much larger number of partners, including late adopters of digital technologies. In particular, we can now reach SMEs, which currently have limited options to explore digitalization pathways without substantial initial investment. A distinctive and exciting training environment will be built exploiting the diverse background of the students. Peer learning and group activities within a cross-disciplinary team will accelerate the development of a common language. The ability to use a combination of skills from different individuals with distinct domain expertise to solve complex problems will build the teams capable of driving the necessary change in industry and academia. The professional training will reflect the diversity of career opportunities available to this cohort in industry, academia and non-commercial research organizations. Each component will be bespoke for scientists in the domain of materials research (Entrepreneurship, Chemical Supply Chain, Science Policy, Regulatory Framework). External partners of training will bring different and novel perspectives (corporate, SMEs, start-ups, international academics but also charities, local authorities, consultancy firms). Cohort activities span the entire duration of the training, without formal division between "training" and "research" periods, exploiting the physical infrastructure of MIF and its open access area to foster a strong and vital sense of community. We will embed EDI principles in all aspects of the CDT (e.g. recruitment, student well-being, composition of management, supervisory and advisory teams) to make it a pervasive component of the student experience and professional training.
more_vert assignment_turned_in Project2019 - 2027Partners:European Synch Radiation Facility - ESRF, Helmholtz Association, Centre for Process Innovation (Dup'e), NanoTemper, Reprocell-Europe +47 partnersEuropean Synch Radiation Facility - ESRF,Helmholtz Association,Centre for Process Innovation (Dup'e),NanoTemper,Reprocell-Europe,Astex,Concept Life Sciences (United Kingdom),Max iv,Cambridge Crystallographic Data Centre,South Tees Hospitals NHS Foundtn Trust,Reprocell-Europe,NanoTemper,Universidade de Sao Paulo,CRB,Bruker Daltonik GmbH,Bionow Ltd,CPI Ltd,Newcastle University,LightOx Ltd,Bruker Daltonik GmbH,European Synch Radiation Facility - ESRF,Boehringer Ingelheim Pharma,Newcastle University,Diamond Light Source,High Force Research Ltd,Bionow Ltd,South Tees Hospitals NHS Foundtn Trust,University of Sao Paolo,Diamond Light Source,University of Sao Paulo,GlaxoSmithKline (Harlow),Cambridge Research Biochemicals,High Force Research Ltd,Centre for Process Innovation,Darlington,Max iv,LightOx Ltd,Helmholtz Association of German Research Centres,Arc Trinova Ltd (Arcinova),ALMAC SCIENCES,Glythera Ltd,GlaxoSmithKline PLC,Lund University,Boehringer Ingelheim (International),Concept Life Sciences,Arcinova,Boehringer Ingelheim Pharma,Concept Life Sciences,Almac Group Ltd,CCDC,GSK,Astex,GlytheraFunder: UK Research and Innovation Project Code: EP/S022791/1Funder Contribution: 7,571,970 GBPMolecular sciences, such as chemistry, biophysics, molecular biology and protein science, are vital to innovations in medicine and the discovery of new medicines and diagnostics. As well as making a crucial contribution to health and society, industries in this field provide an essential component to the economy and contribute hugely to employment figures, currently generating nearly 500,000 jobs nationally. To enable and facilitate future economic growth in this area, the CDT will provide a cohort of researchers who have training in both aspects of this interface who will be equipped to become the future innovators and leaders in their field. All projects will be based in both molecular and medical sciences and will focus on unmet medical needs, such as understanding of disease biology, identification of new therapeutic targets, and new approaches to discovery and development of novel therapies. Specific problems will be identified by researchers within the CDT, industrial partners, stakeholders and the CDT students. The research will be structured around three theme areas: Biology of Disease, Molecule and Assay Design and Structural Biology and Computation. The CDT brings together leading researchers with a proven track record across these areas and who have pioneered recent advances in the field, such as multiple approved cancer treatments. Their combined expertise will provide supervision and mentorship to the student cohort who will work on projects that span these research themes and bring their contributions to bear on the medical problems in question. The student cohort approach will allow teams of researchers to work together on joint projects with common goals. Projects will be proposed between academics, industrial partners and students with priority given to those with industrial relevance. The programme of research and training across the disciplines will equip graduates of the CDT with an unprecedented background of knowledge and skills across the disciplines. The programme of research and training across the disciplines will be supplemented by training and hands-on experiences of entrepreneurship, responsible innovation and project management. Taken together this will make graduates of the CDT highly desirable to employers, equip them with the skills they need to envisage and implement future innovations in the area and allow them to become the leaders of tomorrow. A structured and highly experienced management group, consisting of a director, co-directors, theme leads and training coordinators will oversee the execution of the CDT with the full involvement of industry partners and students. This will ensure delivery of the cohort training programme and joint events as well as being accountable for the process of selection of projects and student recruitment. The management team has an established track record of delivery of research and training in the field across industry and academia as well as scientific leadership and network training coordination. The CDT will be delivered as a single, fully integrated programme between Newcastle and Durham Universities, bringing together highly complementary skills and backgrounds from the two institutions. The seamless delivery of the programme across the two institutions is enabled by their unique connectivity with efficient transport links and established regional networks. The concept and structure of the CDT has been developed in conjunction with the industrial partners across the pharmaceutical, biotech and contract research industries, who have given vital steer on the desirability and training need for a CDT in this area as well as to the nature of the theme areas and focus of research. EPSRC funding for the CDT will be supplemented by substantial contributions from both Universities with resources and studentship funding and from industry partners who will provide training, in kind contribution and placements as well as additional studentships.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
