Airbus Defence and Space
Airbus Defence and Space
22 Projects, page 1 of 5
assignment_turned_in Project2018 - 2020Partners:University of Surrey, Airbus Defence and Space, Rutherford Appleton Laboratory, University of Surrey, Airbus Defence and Space +1 partnersUniversity of Surrey,Airbus Defence and Space,Rutherford Appleton Laboratory,University of Surrey,Airbus Defence and Space,Rutherford Appleton LaboratoryFunder: UK Research and Innovation Project Code: EP/S001964/1Funder Contribution: 524,716 GBPWhen we think about spacecraft we tend to refer to planets' exploration, but most of the every-day electrical items we normally use (TV, mobile phone, sat-nav etc.) also use satellites and they require more and more sophisticated technologies. The construction of spacecraft is a very long and complex procedure, which needs to be maintained in line with the development of technologies on Earth. There is the need to make this process faster and more affordable. In the development of a satellite two factors that significantly affect cost and duration of the process are the design of the spacecraft for MAIT (Manufacturing, Assembly, Integration and Test), and the long testing process the spacecraft has to undergo (structural, thermal, electrical and optical) with all the uncertainties related to it. For both issues a novel approach for space applications, virtual testing, would tackle both issues. The final aim of this research is to develop an end-to-end digital model which would virtually reproduce all the test facilities into one single umbrella software where the computational model of the spacecraft can be "tested". Doing this before the real test would give the manufacturer company the real scenario their spacecraft will undergo during test without any unexpected turnout. This, on one side, allows an ideal design in terms of cost/efficiency compromise, and, on the other side, prepares the company on all the possible issues during the test phase, which can be promptly corrected for a smoother physical test procedure. The research is split into three stages: i) building on the expertise gained in the last 2.5 years as postdoc working on virtual testing for vibration tests, the virtual model will be further developed and refined for all possible industry implementations (e.g. correlation of the finite element model, replacement of specific vibration test processes for drastic reduction of over-testing); ii) following the same guidelines developed for vibration tests, virtual models will be built for thermal, electrical and optical tests (comparing virtual results to real test scenarios and nominal analyses); iii) all the virtual models will be collated to develop the final end-to-end digital model (with production of guidelines for use). The final product outcome of the research will be a tool beneficial to multiple entities: clearly test facilities, which can provide an extra service to manufacturer companies before performing the real tests on the spacecraft; small companies which would take advantage of the significant amount of savings in terms of time and cost for accessing a more affordable market; research and development sector, which can take advantage of the virtual models built for the different test facilities and investigate the possible modifications to the current procedures, same as this research is doing for structural tests.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4cf6fe8133d71d933b5bfc6798721ef8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4cf6fe8133d71d933b5bfc6798721ef8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2022Partners:Airbus Defence and Space, Airbus Defence and Space, Defence Science and Technology Laboratory, Airbus (United Kingdom), University of Birmingham +3 partnersAirbus Defence and Space,Airbus Defence and Space,Defence Science and Technology Laboratory,Airbus (United Kingdom),University of Birmingham,Defence Science & Tech Lab DSTL,University of Birmingham,Defence Science & Tech Lab DSTLFunder: UK Research and Innovation Project Code: EP/P008046/1Funder Contribution: 682,650 GBPSociety is increasingly dependent on communications (both person-to-person and machine-to-machine). Where terrestrial infrastructure is under-developed, satellite communication (satcom) is often used for point-to-point communications and networked backhaul. Reliable and robust communications underpin many of the technological developments that are transforming the economic landscape and wider society in the UK. Space technology and applications (including satcom) has been identified as one of Britain's eight "Great Technologies" and the UK has expressed the ambition of capturing 10% of the global space market by 2030. This proposal spans the EPSRC RF and Microwaves Communications and Digital Signal Processing research areas of the ICT Theme. It is relevant to the Aerospace, Defence and Marine Industrial Sector and the Electronics, Communications and IT Industrial Sector. The choice of satcom radio frequency is dependent on various factors, but ultra-high frequency (UHF) is popular because of the low cost of the user terminals, its capability to operate with small and portable antennas, and its resilience to shadowing by objects and foliage. UHF satcom continues to provide an important part of the MOD communications infrastructure. Wideband UHF satcom will also play a key role in future machine-to-machine (M2M) communications systems. This will be especially true for systems in remote areas where terrestrial networks may not be available and for systems requiring high levels of resilience. M2M communications is one of the enablers for the development of the Internet of Things (IoT) that has been identified as one of the most important technologies that will emerge over the next decade and will drive economic and social progress. The data communications capacity of contemporary UHF satcom is low and is limited by the simple waveforms employed. Greater data capacity is required and may be provided by new, multi-carrier wideband waveforms. However, the design and optimisation of such waveforms will require realistic satcom channel emulation. Provision of such channel emulation is hindered by our poor understanding of the distorting effects of the Earth's ionosphere (an ionized region of the upper atmosphere). Such ionospheric distortions are prevalent at high and particularly at low latitudes due to ionospheric irregularities which cause rapid changes in a signal delay, phase and amplitude. We aim to undertake the first systematic, long-term study of the impact of the ionosphere on the wideband (5 MHz) ultra-high frequency (UHF) satcom radio channel. The research programme will undertake measurements (using the upcoming COSMIC-2 UHF wideband channel probe) and modeling to understand the ionospheric impact. The final stage of the programme will be the development of a UHF satcom waveform simulator to help modem designers. This national resource will transform the current capability and allow the UK to take a lead in the design of wideband UHF satcom waveforms.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::80cc12962d2732b9c7e108270f948294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::80cc12962d2732b9c7e108270f948294&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2022Partners:European Space Agency, Airbus Defence and Space, Oclaro (United Kingdom), Rutherford Appleton Laboratory, Airbus Defence and Space +4 partnersEuropean Space Agency,Airbus Defence and Space,Oclaro (United Kingdom),Rutherford Appleton Laboratory,Airbus Defence and Space,Rutherford Appleton Laboratory,UCL,Oclaro Technology UK,ASEFunder: UK Research and Innovation Project Code: EP/S000976/1Funder Contribution: 394,835 GBPSpace technologies, data and services have become indispensable in our everyday lives. Communications satellites (COMSATs), alongside optical fibre, are the main means of global data transmission. In fact, for a vast number of users, such as marine and airways fleets, autonomous cars, remotely located aid camps, and hospitals and schools in less developed areas, satellite communication is the only way to broadcast, navigate or access broadband services. Earth observation satellites provide immediate information in the event of natural disasters, and allow better coordination of emergency and rescue teams. Satellite-based technologies help increase the efficiency of fisheries and agriculture, and play an important role in transport by controlling air and maritime traffic. Both COMSAT and surveying services are critically dependent on the communication links between satellites in orbit and ground control stations. Increasing data capacity of these links and allowing frequency flexibility, which cannot be easily provided by established RF solutions, is long overdue. It is clear that industry needs a step change in technology. Against this backdrop, the project focuses on using key advances in photonic integrated solutions to revolutionise satellite payloads (modules). An integrated photonics approach allows for several optoelectronic functionalities (lasers, photodiodes, etc.) to be monolithically integrated on a single chip. Such integration improves robustness, reduces losses between individual devices and, most importantly, offers ease of scalability, low mass and small footprint, creating great prospects to reduce the cost of satellites. Through close collaboration with academic and industrial partners, this project will develop the world's first integrated, broadly tuneable, photonic-based Frequency Generation Unit (FGU) which can be the heart of satellite communication payloads. The advantage of a photonic FGU over the conventional RF-based solution comes from the great frequency agility of the photonic system, which will allow for the FGU to be included both in communication and earth observation satellites. Firstly, the FGU will form part of innovative communication payloads in communication satellites (transponders), allowing for high-throughput data links from satellites to ground stations and, in the future, between satellites. Furthermore, the FGU will also be deployed in earth observation satellites, allowing for reference-signal distribution inside the satellite using a flexible, lightweight optical fibre rather than a conventional coaxial cable. The use of a photonic FGU would dramatically reduce the weight of a satellite, eliminating the need for tens to hundreds of kilograms of coaxial cables (depending on satellite type), and make a significant monetary saving, given the cost of launching into orbit of $25,000/kg. Secondly, a novel architecture for a complete communications payload based almost entirely on photonics is going to be investigated. Replacing conventional RF components with integrated photonic sub-systems will result in an unprecedented mass and volume reduction, which, in turn, will lead to a reduction in the cost of in-orbit-delivered data capacity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f53d769aeb7ea566452eb88a5107a423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f53d769aeb7ea566452eb88a5107a423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2022 - 2025Partners:Airbus (United Kingdom), Airbus Defence and Space, Airbus Defence and Space, Satellite Applications Catapult, Teledyne e2v (United Kingdom) +6 partnersAirbus (United Kingdom),Airbus Defence and Space,Airbus Defence and Space,Satellite Applications Catapult,Teledyne e2v (United Kingdom),University of Strathclyde,Fraunhofer UK Research Ltd,e2v technologies plc,Fraunhofer UK Research Ltd,University of Strathclyde,Satellite Applications CatapultFunder: UK Research and Innovation Project Code: EP/W027011/1Funder Contribution: 480,293 GBPQuantum technologies has the potential to revolutionise society by enabling new and enhanced applications for secure communication, sensing and measurement, positioning, navigation, and timing, and computation. Most of the research has concentrated on developing these technologies to work on the Earth, such as quantum key distribution through optical fibres, ground transportable or aerial quantum sensors, and quantum processors. However, by bringing the quantum advantage off this world and into space, we may begin to realise their full potential. Presently, quantum key distribution for securing communications is limited to a few hundred kilometres by the absorption of single photons in optical fibres, to reach global scale requires placing quantum light sources into orbit to operate in the vacuum of space. Quantum sensor-equipped satellites could monitor the Earth with unrivalled accuracy, vital for the fight against climate change. And quantum enhanced clocks could supercharge the next generation of Global Navigation Satellite Systems (aka GPS) and provide ultra-precise timing and positioning wherever you are. But building and putting them into orbit is a considerable challenge as payloads need to survive the rigours of launch and the harsh radiation, thermal, and vacuum environment in space. This network brings together world experts who are developing space quantum technologies to work together to overcome these challenges. It includes academic institutions, public sector research enterprises, translational research organisations, small and large business, all combining their complementary knowledge and experience. But the high vantage point of space and the coverage it gives are not the only advantages of placing quantum technologies in orbit. Ultimately, we would like to network quantum devices using quantum entanglement. By connecting distributed quantum systems, from quantum computers, quantum sensors, quantum clocks, even quantum telescopes using entanglement, we massively increase their power. The difficulties of sending quantum signals through optical fibres are compounded for entanglement, hence the need for space-based quantum networking to weave a globe spanning quantum internet. The network of quantum researchers and engineers will work towards this grand challenge for a quantum connected world.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b1984d3c7129a78dec27a75bd941c9f4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b1984d3c7129a78dec27a75bd941c9f4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2024Partners:Swansea University, United Kingdom Atomic Energy Authority, Airbus Defence and Space, Swansea University, TWI Technology Centre Wales +14 partnersSwansea University,United Kingdom Atomic Energy Authority,Airbus Defence and Space,Swansea University,TWI Technology Centre Wales,The University of Manchester,Synopsys (International),TWI Technology Centre Wales,University of Salford,EURATOM/CCFE,Nikon (International),Synopsys (United States),University of Manchester,Nikon,Airbus Defence and Space,UK ATOMIC ENERGY AUTHORITY,Synopsys Inc.,Airbus (United Kingdom),The Welding InstituteFunder: UK Research and Innovation Project Code: EP/R012091/1Funder Contribution: 1,025,110 GBPThis fellowship programme will apply state-of-the-art 3D image processing and machine learning methods, developing them further where necessary, to deliver a new software tool that performs industrial production line 'virtual qualification' using part-specific simulations from 3D X-ray imaging in high-value manufacturing (HVM). Qualification is when manufactured parts are verified fit for purpose, often achieved by performing experimental tests representative of in-service conditions. Virtual qualification will verify by modelling micro-accurate digital replicas of the final part (flaws included) replacing costly and time-consuming experimental methods. Additionally, this will assess defects for performance impact (rather than expensive but unspecific pass/fail testing). The challenge is that image-based modelling currently requires significant human interaction over a timescale of weeks. Applying this to many parts takes significant time to complete unless methodology can be changed. The novelty of this proposal is to use machine learning with foreknowledge, due to production line parts being similar, to automate conversion of microresolution 3D images into part-specific models that simulate in-service conditions. This automation is required for the technique to scale for deployment in industrial manufacturing. Additionally, because much of the decision making entailed is subjective, and therefore prone to human error, a consequential benefit of automation is consistent outputs by removing this variability. This proposal focuses on image-based finite element methods (IBFEM), which merge real and virtual worlds to account for deviations caused by manufacturing processes not considered by design-based finite element methods (FEM), e.g. due to tolerancing or micro-defects. This implementation of part-specific modelling has applications in advanced manufacturing wherever there is variability from one component to another e.g. additive manufacturing or composites. A case study will be undertaken with the UK Atomic Energy Authority (UKAEA) for a heat exchange component. This will showcase the capabilities of the technique to automatically produce a report that estimates the impact of deviations from design on performance. Unlike FEM, which have undergone extensive certification and are industry-wide trusted methods, there has not been a systematic approach which can be used to benchmark image-based modelling workflows against verified experimental data. This work will produce benchmarks based on standards for experimental measurements of thermomechanical material properties to give confidence in the technique for industrial adoption. The database of benchmarks will be useful for those wishing to use image-based modelling to validate workflows and could contribute towards establishing new standards in the field. Central to this proposal is the use of FEM, the de-facto tool for predicting thermomechanical performance in engineering. Prof Zienkiewicz's research at Swansea University established it as a birthplace for FEM, and is now recognised as a leading research centre in the field. The team undertaking this fellowship, led by Dr Llion Evans, will be based at the Zienkiewicz Centre for Computational Engineering, Swansea University and will work in collaboration with the centre's head, Prof Nithiarasu, an expert in image-based modelling for biomechanics. Access to the equipment required for all aspects of this highly multidisciplinary work i.e. thermomechanical characterisation, 3D imaging and computing is available through complementary centres at the College of Engineering, Swansea University. To support this extremely multidisciplinary work, key industrial organisations will be collaborating on this project. Nikon Metrology Ltd. (X-ray imaging systems), Synopsys Inc. (image processing software), TWI (non-destructive testing and industrial standards), UKAEA (energy generation end-user) and Airbus (aerospace end-user).
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d41d50627066052eaece181144679a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4d41d50627066052eaece181144679a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right