Powered by OpenAIRE graph

Embrapa Amazonia Oriental

Embrapa Amazonia Oriental

6 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: NE/S01084X/1
    Funder Contribution: 650,990 GBP

    Wildfires have become the new norm in many parts of the Amazonian humid forest, an ecosystem that did not co-evolve with this stressor. Large areas of previously undisturbed and human-modified forests are catching fire, jeopardising the future of the largest and most biodiverse tropical rainforest in the world, and potentially acting as a feedback that would further increase regional and global climate change. In recent dry years the extent of fire has greatly exceeded the rate of deforestation in the Brazilian Amazon. These fires result in in about half of the trees dying, and open up the forests to make them more vulnerable to subsequent fires. Despite the growing prevalence of Amazonian wildfires, we still have a very limited understanding of why these low intensity understorey fires cause such high rates of tree mortality, which species functional traits predict vulnerability or survival to these fires, what are the impacts of wildfires on the forest carbon balance and what are the patterns of taxonomic and functional recovery following a fire event. We propose a research plan to achieve major advances in our understanding of such wildfire impacts, including of the underlying mechanisms that cause both short-term and longer-term tree mortality. This work will be based at a field site in Santarem in Eastern Brazilian Amazonia, where we have collected several years of measurements of detailed vegetation ecology and carbon cycle tracking over a range of plots. These include a number of plots which experienced fire during the 2015/16 El Niño. We will implement this project by combining a state-of-the-art forest burn experiment with continued monitoring of a unique set of long-term sampling plots, some of which we have tracked through the 2015-16 wildfire event associated with a strong El Niño. We are uniquely placed to address these fundamental questions given our network of burned and unburned forest plots that is already in place, the strong partnerships we have forged with park managers and federal agencies, and the numerous past datasets that we can use as baseline information. The fire experiment will involve setting fire to limited patch of forest (with the close cooperation of local fire brigades), tracking fire intensity and tracking the physiology and mortality responses of individual trees in the fire plots, including trees that have their root mats or their bark insulated from fire damage. We will also experiment with different fire break methodologies to explore the most effective way to stop such fires. With the intensive carbon cycle studies we will track the carbon cycle responses for up to seven years after the 2015 fires, giving us novel insight into the longer term carbon cycle responses and the ecosystem responses and recovery after a fire event. As well as advancing scientific knowledge about a pervasive and increasing threat to the future of tropical forests in the Anthropocene, our co-designed pathways to impact ensures we will also inform and improve approaches to minimise risk of fire-induced dieback of humid Amazonian forests. We will work closely with local fire managers, and engage with state and national policymakers, to draft recommendations on how to manage forest reserves and forest-agriculture mixed landscapes to minimise the risk of fire spread. If applied at a large scale, these fire prevention strategies are a crucial tool that can help minimise the risk of extensive fire-induced dieback within Amazonian forests.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X019055/1
    Funder Contribution: 1,010,710 GBP

    The overall aim of this project is to determine and communicate the risk of significant change to the Amazon rainforest caused by anthropogenic disturbance and climate change. We will address a fundamental issue of our time, on the likelihood of Amazon rainforest dieback in the 21st century and identify regions that are most susceptible. We will combine this new knowledge with policies and scenarios developed by key stakeholders to co-design a Safe-Operating-Space for Amazonia. To address the iconic issue of Amazon dieback we will advance new ecological understanding of how forests grow, decline and recover following disturbance from climate extremes, forest fire and deforestation and their interaction in the context of 21st Century global warming. We will build novel datasets using a new forest plot network, drones and satellites to produce near-real-time maps of the risk to forests from climate, and track individual large-tree mortality across the basin. Together this information will be used in mathematical models to help estimate the risk of future forest dieback. We will join this work with models used to predict the effects of land use (forest conversion, degradation) on forest function, and the ecosystem services these forests provide to humanity. The outputs will enable us to deliver new information to policy makers regarding future options for land use, helping them to build optimal land use pathways that minimise the risks that may arise out of large-scale forest loss or dysfunction in Amazonia. The Amazon forest plays a vital role in the world's climate. In addition, by annually absorbing 5-10% of human-related CO2 emissions via vegetation growth, the region acts as a large brake on climate change. Climate extremes (eg drought), forest fires and deforestation reverse this process, causing net emissions to the atmosphere. If this were to happen on a large enough scale, via increased forest loss or increased rates of climate change - or their interaction - the resulting positive effect on global CO2 and climate change, would make the already-challenging Paris climate targets virtually impossible. In short, climate change, forest fires and deforestation have been identified as major intensifying and interacting threats to Amazonia. A substantive loss of Amazonian forest, also known as "Amazon dieback", would have huge negative consequences for human well-being, biodiversity, biogeochemical cycling, and regional and global climate. However, the level of global climate change combined with human disturbance that could trigger large-scale dieback is not known. Climate change is predicted to become more intense in the region alongside increases in human-driven deforestation and forest degradation (e.g fires, logging). Their impacts are poorly understood because of a lack of data, and because models cannot currently represent the key processes well enough. We have gathered leading UK and S American scientists in the fields of ecology, ecophysiology, Earth observation (using satellites) and the mathematical modelling of vegetation growth, land-use and climate as applied to Amazonia. We are uniquely positioned to make a step-change in understanding the combined effects of climate stress and human disturbance on Amazonia. Our measurements will build new knowledge about intact and disturbed forests, their stability and the physiology driving their stress responses. These knowledge advances will enable new modelling of forest-climate-land-use interactions which we will use to inform policymakers. We will engage with stakeholders from state to international levels to co-develop land-use scenarios that minimise risk in future climate and forest ecosystem services. Overall, we propose multiple large and integrated advances in empirical and modelling studies of the forests of Amazonia, and will build a science-policy dialogue that delivers significant impact locally, regionally and globally.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S011870/1
    Funder Contribution: 1,428,850 GBP

    Insect pollinators have undergone declines across the world, a result of factors including intensive agriculture, habitat loss, climate change and invasive species. This represents a major concern in Latin America (LATAM) where it threatens economically important crops and wider biodiversity. The impact of these losses in LATAM remains poorly understood, undermining the capacity to develop policies vital to mitigate pollinator losses and support both agricultural production and wider ecosystem health. A new, coherent evidence base is required, that considers impacts on individual species, their distributions and populations, the landscapes they persist in and their unique capacities to deliver pollination to different crops. Without this it will not be possible to develop the applied experimental and modelling solutions policy makers need to deliver sustainable farming economies. This proposal builds on Newton Phase 1 project SURPASS, an international collaboration between 37 participants, that identified knowledge gaps, issues, and research areas that prioritise conservation and sustainable use of LATAM pollinators. The SURPASS2 goal is to deliver evidence for the creation of resilient pollination services for sustainable economic growth, improved human health and wellbeing as well as positive environmental and agricultural outcomes. This will be addressed by five main objectives, co-designed with academics and stakeholders that establish interconnected work packages that build capacity to manage pollination services and provide tangible outcomes. Our goals will be delivered through 4 work packages: WP1) Monitoring populations and understanding their distributions: before any effective solution can be developed to manage LATAM pollinators it is crucial that we understand the current distribution of species and develop and trial approaches for long term monitoring. Only by understanding where pollinators can be found can we develop applied solutions to manage them. We will design a standardised framework to assess the status and trends of pollinator populations through existing and new monitoring schemes, including citizen science. WP2) How does the environment in which pollinators live affect them, and how does this affect capacity to provide crop pollination: Land use change and land management represent fundamental factors affecting pollinator populations. We will undertake detailed landscape scale experiments across LATAM focusing on production of economically significant crops to understand how landscape management affects pollinators and the pollination services they supply. This will provide data for models and help growers, land managers and policy makers to optimise pollination to sustainably increase crop yields and quality. We will also quantify how invasive species of pollinators impact on wild and native insect pollinators and plants. WP3) Understanding national scale deficits in pollination for key crops identifying areas where pollination services are at high risk. Using cutting edge satellite imagery we will map nationally the occurrence of key insect pollinated crops. We will link this data to the distribution of insect pollinator communities to assess if these populations provide adequate pollination, as well as modelling how resilient these communities are to species losses. As each species of insect pollinator is unique their loss can have potentially huge consequences for agricultural production. WP4) Develop a national scale predictive framework to support policy goals of maximising benefits for agricultural productivity provided by pollination. This will integrate results from WP1-3 to model pollinator communities to develop effective strategies for decision making processes for different stakeholders that benefit from insect pollination. This will provide the framework to work with stakeholders to produce a roadmap for maximising pollination services and long term monitoring in LATAM.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S011870/2
    Funder Contribution: 934,793 GBP

    Insect pollinators have undergone declines across the world, a result of factors including intensive agriculture, habitat loss, climate change and invasive species. This represents a major concern in Latin America (LATAM) where it threatens economically important crops and wider biodiversity. The impact of these losses in LATAM remains poorly understood, undermining the capacity to develop policies vital to mitigate pollinator losses and support both agricultural production and wider ecosystem health. A new, coherent evidence base is required, that considers impacts on individual species, their distributions and populations, the landscapes they persist in and their unique capacities to deliver pollination to different crops. Without this it will not be possible to develop the applied experimental and modelling solutions policy makers need to deliver sustainable farming economies. This proposal builds on Newton Phase 1 project SURPASS, an international collaboration between 37 participants, that identified knowledge gaps, issues, and research areas that prioritise conservation and sustainable use of LATAM pollinators. The SURPASS2 goal is to deliver evidence for the creation of resilient pollination services for sustainable economic growth, improved human health and wellbeing as well as positive environmental and agricultural outcomes. This will be addressed by five main objectives, co-designed with academics and stakeholders that establish interconnected work packages that build capacity to manage pollination services and provide tangible outcomes. Our goals will be delivered through 4 work packages: WP1) Monitoring populations and understanding their distributions: before any effective solution can be developed to manage LATAM pollinators it is crucial that we understand the current distribution of species and develop and trial approaches for long term monitoring. Only by understanding where pollinators can be found can we develop applied solutions to manage them. We will design a standardised framework to assess the status and trends of pollinator populations through existing and new monitoring schemes, including citizen science. WP2) How does the environment in which pollinators live affect them, and how does this affect capacity to provide crop pollination: Land use change and land management represent fundamental factors affecting pollinator populations. We will undertake detailed landscape scale experiments across LATAM focusing on production of economically significant crops to understand how landscape management affects pollinators and the pollination services they supply. This will provide data for models and help growers, land managers and policy makers to optimise pollination to sustainably increase crop yields and quality. We will also quantify how invasive species of pollinators impact on wild and native insect pollinators and plants. WP3) Understanding national scale deficits in pollination for key crops identifying areas where pollination services are at high risk. Using cutting edge satellite imagery we will map nationally the occurrence of key insect pollinated crops. We will link this data to the distribution of insect pollinator communities to assess if these populations provide adequate pollination, as well as modelling how resilient these communities are to species losses. As each species of insect pollinator is unique their loss can have potentially huge consequences for agricultural production. WP4) Develop a national scale predictive framework to support policy goals of maximising benefits for agricultural productivity provided by pollination. This will integrate results from WP1-3 to model pollinator communities to develop effective strategies for decision making processes for different stakeholders that benefit from insect pollination. This will provide the framework to work with stakeholders to produce a roadmap for maximising pollination services and long term monitoring in LATAM.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/W001691/1
    Funder Contribution: 653,044 GBP

    Wildfires are becoming the new normal across Amazonia. Deforestation is transforming the region at a rate of around 10,000 square km/year (half the area of Wales), and now the area degraded annually -forest logged and burned but not cut down-is greater than the area deforested. Fire has historically been rare in Amazonia, meaning that the forests are not adapted to fire and the trees often die from fires - releasing carbon (C) back to the atmosphere and amplifying global climate change. Burning of tropical forests is already releasing more climate-warming carbon dioxide than fossil fuel burning in the whole of Europe. Trees in Amazonia contain around 7x more C than humans are releasing every year, and soils contain the same amount again, so it is vital to understand what is happening to this C and minimize emissions. As vegetation sheds its leaves, branches, and roots, or dies, some of the C released remains in the soil, and some is later decomposed and released back to the atmosphere. Carbon exists in the soil in many different forms, from new inputs from decomposing plant material to ancient C formed over millennia. Burning adds pyrogenic carbon (PyC) to the soil, a partially burnt form of C that is resistant to decomposition and could make the soil more fertile. Because soil C takes a long time to form, its conservation is particularly important. Despite the widespread increase in fire in Amazonia, there have been few measurements of soil C fractions and dynamics in burned areas - most have focussed on natural forests. Burned forests will have different composition, forest structure, and C dynamics. Understanding how different soil C fractions are formed and lost is crucial to understand how fire and climate change affect C storage. We propose to make major advances in understanding fire impacts, including the processes that affect the type and quantifies of soil C formed, and how C gains/losses vary over time, with soil type, and climate. We will combine new measurements with innovative modelling to inform land management strategies and C budgets. We have already collected data from across Amazonia in intact forests that have not recently burned. Crucially our project will collect a new, comprehensive dataset from human-modified forests, including logged, burned and abandoned land. We will use an approach known as a chronosequence, where we take samples at sites that were burnt at different times in the past, so we can see how the soil C has changed after e.g. 1 year, 2 years, or up to 20 years after a fire. This will then be used to develop a state-of-the-art land surface model, JULES, which forms part of the UK Earth System Model. At our sample sites, we will evaluate how different burn severities affect soil C, both in surface and deep soils, and how these change over time post-burning and with soil, climate, and land-use such as logging. At 3 focal sites, we will take detailed measurements of the decomposition rate of the C over 4 years, comparing measurements with different land-use, burn severity and wet vs dry seasons. Knowing what forms C takes after a fire and how fast it decomposes under different conditions will enable us to build these processes into the JULES model. We will model PyC globally for the first time and make projections of land C changes in Amazonia over the next ~40-60 years under different management practices. As well as transforming scientific understanding of post-fire soil C and its resilience to climate and management, our project will inform socio-environmental planning for sustainable resource use to conserve soil C. We will work with regional partners, fire managers, state and national policymakers to integrate our findings into decision-making to minimise negative fire impacts. Due to the Amazon Basin-scale of our work, these strategies are a crucial step to limit the risk of large-scale loss of soil C.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.