Nu Quantum
Nu Quantum
9 Projects, page 1 of 2
assignment_turned_in Project2022 - 2026Partners:University of Glasgow, University of Southampton, SeeQC.EU (UK), University of Southampton, Nu Quantum +10 partnersUniversity of Glasgow,University of Southampton,SeeQC.EU (UK),University of Southampton,Nu Quantum,sureCore Ltd,University of Glasgow,Ericsson Silicon Valley,KCL,Ericsson Silicon Valley,SeeQC.EU (UK),SemiWise Ltd.,SemiWise Ltd.,Nu Quantum,sureCore LtdFunder: UK Research and Innovation Project Code: EP/W032627/1Funder Contribution: 2,448,090 GBPQuantum computers are superior to conventional computers for their high computing power, and this is true only if they have many qubits e.g., 100s or more. The current leading commercial players in the field have successfully demonstrated processors with more than 50 cryogenic qubits using the classical control interferences which suffer from bulky cables and electronics. Novel solutions are desperately and urgently required for qubit upscaling. Avenues for improvement include dramatically increasing the number, density and modularity of independent control channels, signal bandwidth, the time and amplitude resolution of generated waveforms, and the physical footprint of circuits and interconnects for noisy intermediate-scale quantum computing (NISQC), universal fault-tolerant quantum computing (UFTQC) and efficient multiplexing of single-photon detectors. This project will be a step towards improving the performance of and potentially revolutionising QC control hardware and future integration based on modern information and communication hardware. This will be achieved by synergising QC with ICT's state-of-the-art developments in optical, wireless and cyro-CMOS electronics. The researchers from both QC and ICT sectors will collaboratively identify, explore, develop, and benchmark the technologies at both device and system levels. Through nationwide networking chaired by NQCC with support from the University of Glasgow (UoG), National Quantum Computing Centre (NQCC), National Physical Laboratory (NPL), University College London (UCL), University of Strathclyde (UoS), and Science and Technology Facilities Council (STFC) and more than 20 industrial and academic partners, we will eventually deliver the ambitious objectives for the next generation of quantum computers with more than 100 qubits. The first 12 months of EPIQC will be dedicated to co-creation activities aimed at validating and further refining the focus of our work. The NQCC will devote a project manager to coordinate and support the co-creation activities, helping to reach the broader community and ensuring activities are delivered professionally. In the first instance, a series of one-to-one conversations will be held with end-users to validate needs and understand the market pull. This will inform further one-to-one discussions with key industry players and the identification of supply chains and pre-competitive areas of research. This groundwork will be essential to the successful set-up and definition of a series of focus groups on each of the pillars, exploring state-of-the-art, future trends and markets and defining top-level roadmaps for pre-competitive challenges. These challenges will be further explored through sandpits defining the details of research strands under each pillar. In years 2-4 EPIQC focusses on investigations of cross-disciplinary interfacing and integration of alternative control and readout architectures through three complementary pillars, and the verification of ICT-QC hardware for user needs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ccef6002e006c295b7fa6e9c44169bfd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::ccef6002e006c295b7fa6e9c44169bfd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2029Partners:Mind Foundry Ltd, Centre for Science of Information, DeepMind, Chemring Technology Solutions (United Kingdom), Nu Quantum +14 partnersMind Foundry Ltd,Centre for Science of Information,DeepMind,Chemring Technology Solutions (United Kingdom),Nu Quantum,University of California, San Diego,EnCORE,Institute of Network Coding,Cambridge Consultants (United Kingdom),DIMACS,THALES UK LIMITED,Georgia Institute of Technology,Nokia Bell Labs,Swiss Federal Inst of Technology (EPFL),Royal Institute of Technology KTH Sweden,University of Bristol,Center for Networked Intelligence,Meta,Toshiba Europe LimitedFunder: UK Research and Innovation Project Code: EP/Y028732/1Funder Contribution: 7,691,560 GBPArtificial intelligence (AI) is on the verge of widespread deployment in ways that will impact our everyday lives. It might do so in the form of self-driving cars or of navigation systems optimising routes on the basis of real-time traffic information. It might do so through smart homes, in which usage of high-power devices is timed intelligently based on real- time forecasts of renewable generation. It might do so by automatically coordinating emergency vehicles in the event of a major incident, natural or man-made, or by coordinating swarms of small robots collectively engaged in some task, such as search-and-rescue. Much of the research on AI to date has focused on optimising the performance of a single agent carrying out a single well-specified task. There has been little work so far on emergent properties of systems in which large numbers of such agents are deployed, and the resulting interactions. Such interactions could end up disturbing the environments for which the agents have been optimised. For instance, if a large number of self-driving cars simultaneously choose the same route based on real-time information, it could overload roads on that route. If a large number of smart homes simultaneously switch devices on in response to an increase in wind energy generation, it could destabilise the power grid. If a large number of stock-trading algorithmic agents respond similarly to new information, it could destabilise financial markets. Thus, the emergent effects of interactions between autonomous agents inevitably modify their operating environment, raising significant concerns about the predictability and robustness of critical infrastructure networks. At the same time, they offer the prospect of optimising distributed AI systems to take advantage of cooperation, information sharing, and collective learning. The key future challenge is therefore to design distributed systems of interacting AIs that can exploit synergies in collective behaviour, while being resilient to unwanted emergent effects. Biological evolution has addressed many such challenges, with social insects such as ants and bees being an example of highly complex and well-adapted responses emerging at the colony level from the actions of very simple individual agents! The goal of this project is to develop the mathematical foundations for understanding and exploiting the emergent features of complex systems composed of relatively simple agents. While there has already been considerable research on such problems, the novelty of this project is in the use of information theory to study fundamental mathematical limits on learning and optimisation in such systems. Information theory is a branch of mathematics that is ideally suited to address such questions. Insights from this study will be used to inform the development of new algorithms for artificial agents operating in environments composed of large numbers of interacting agents. The project will bring together mathematicians working in information theory, network science and complex systems with engineers and computer scientists working on machine learning, AI and robotics. The aim goal is to translate theoretical insights into algorithms that are deployed onreal world applications real systems; lessons learned from deploying and testing the algorithms in interacting systems will be used to refine models and algorithms in a virtuous circle.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::123337f5db26b60a0b5856020f3b413c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::123337f5db26b60a0b5856020f3b413c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:SeeQC UK, UCL, National Physical Laboratory, Riverlane, Quantinuum +19 partnersSeeQC UK,UCL,National Physical Laboratory,Riverlane,Quantinuum,Nu Quantum,Keysight Technologies,ZURICH INSTRUMENTS AG,BT plc,Quantum Motion,National Quantum Computing Centre,Oxford Instruments (United Kingdom),Universal Quantum Ltd,Amazon Web Services EMEA SARL,PASQAL,Oxford Ionics,PhaseCraft Ltd,IBM UNITED KINGDOM LIMITED,Oxford Quantum Circuits,IQM,Bluefors Oy,THALES UK LIMITED,Toshiba Europe Limited (UK),Quandela SASFunder: UK Research and Innovation Project Code: EP/Y035046/1Funder Contribution: 8,340,420 GBPThe primary objective of the QC2 CDT is to train the upcoming generation of pioneering researchers, entrepreneurs, and business leaders who will contribute to positioning the UK as a global leader in the quantum-enabled economy by 2033. The UK government and industry have demonstrated their commitment by investing £1 billion in the National Quantum Technologies Programme (NQTP) since 2014. In its March 2023 National Quantum Strategy document, the UK government reaffirmed its dedication to quantum technologies, pledging £2.5 billion in funding over the next decade. This commitment includes the establishment of the UKRI National Quantum Computing Centre (NQCC). The fields of quantum computation and quantum communications are at a pivotal juncture, as the next decade will determine whether the long-anticipated technological advancements can be realized in practical, commercially-viable applications. With a wide-ranging spectrum of research group activities at UCL, the QC2 CDT is uniquely situated to offer comprehensive training across all levels of the quantum computation and quantum communications system stacks. This encompasses advanced algorithms and quantum error-correcting codes, the full range of qubit hardware platforms, quantum communications, quantum network architectures, and quantum simulation. The QC2 CDT has been co-developed through a partnership between UCL and a network of UK and international partners. This network encompasses major global technology giants such as IBM, Amazon Web Services and Toshiba, as well as leading suppliers of quantum engineering systems like Keysight, Bluefors, Oxford Instruments and Zurich Instruments. We also have end-users of quantum technologies, including BT, Thales, NPL, and NQCC, in addition to a diverse group of UK and international SMEs operating in both quantum hardware (IQM, NuQuantum, Quantum Motion, SeeQC, Pasqal, Oxford Ionics, Universal Quantum, Oxford Quantum Circuits and Quandela) and quantum software (Quantinuum, Phase Craft and River Lane). Our partners will deliver key components of the training programme. Notably, BT will deliver training in quantum comms theory and experiments, IBM will teach quantum programming, and Quantum Motion will lead a training experiment on semiconductor qubits. Furthermore, 17 of our partners will co-sponsor and co-supervise PhD projects in collaboration with UCL academics, ensuring a strong alignment between the research outcomes of the CDT and the critical research objectives of the UK quantum economy. In total the cash and in-kind contributions from our partners exceed £9.1 million, including £2.944 million cash contribution to support 46 co-sponsored PhD studentships. QC2 will provide an extensive cohort-based training programme. Our students will specialize in advanced research topics while maintaining awareness of the overarching system requirements for these technologies. Central to this programme is its commitment to interdisciplinary collaboration, which is evident in the composition of the leadership and supervisory team. This team draws expertise from various UCL departments, including Chemistry, Electronics and Electrical Engineering, Computer Science, and Physics, as well as the London Centre for Nanotechnology (LCN). QC2 will deliver transferable skills training to its students, including written and oral presentation skills, fostering an entrepreneurial mindset, and imparting techniques to maximize the impact of research outcomes. Additionally, the programme is committed to taking into consideration the broader societal implications of the research. This is achieved by promoting best practices in responsible innovation, diversity and inclusion, and environmental impact.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::09da1c7bb3533d9ebbb25b8e5c06b6a1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2032Partners:PhaseCraft Ltd, University of Bristol, QURECA Ltd., QLM Technology Ltd, National Physical Laboratory +24 partnersPhaseCraft Ltd,University of Bristol,QURECA Ltd.,QLM Technology Ltd,National Physical Laboratory,Duality Quantum Photonics Ltd,Hewlett-Packard (United States),QuiX Quantum B.V.,Atom Computing,Quantinuum,Xanadu,Nu Quantum,PsiQuantum Corp.,Siloton Ltd,Quantum Women Ltd,mBryonics,KETS Quantum Security Ltd,Karlsruhe Institute of Technology (KIT),BTEXACT,ORCA Computing Ltd,Sydney Quantum Academy,Quantum Exponential,Oxford Instruments (United Kingdom),Riverlane,Light Trace Photonics Ltd,National Quantum Computing Centre,Wave Photonics,Universal Quantum Ltd,ColdQuanta UK LtdFunder: UK Research and Innovation Project Code: EP/Y034937/1Funder Contribution: 8,001,640 GBPQuantum information science and technologies (QIST) are uniquely placed to disrupt and transform sectors across the board. Quantum technologies, by exploiting the distinctive phenomena of quantum physics, can perform functions fundamentally unachievable by technologies based solely upon classical physics. For example, when applied to computing, calculations and operations that would take the best supercomputers hundreds of years to complete could be resolved within seconds using quantum computers; as another example, QIST can also be used in sensing and imaging to obtain enhanced precision in a variety of measurements ranging from gas concentrations to gravitational waves, supporting established industries in sectors like manufacturing, energy and healthcare. Furthermore, the application of quantum technologies will have significant implications within communications and security given their ability to break traditional encryption methods used to protect data within financial transactions or military communications while at the same time offering a range of novel, secure solutions largely compatible with the existing infrastructures. The potential of quantum technologies is well demonstrated through its significant financial and strategic backing globally. Restricted to academic environments up until the start of the last decade, the worldwide investment into quantum initiatives has now reached $33 billion, with significant contributions made across China, the US, and Europe. In the UK, the strategic importance of quantum technologies is clear: with a strategic commitment of £2.5 billion over the next decade, EPSRC has listed Quantum Technologies a mission-inspired research priority and the Department for Science Innovation and Technology have named quantum technologies as one of their seven technology families within the UK's Innovation Strategy. It is clear that, around the world, quantum technologies are flourishing. While the technological potential and national importance of QIST to the UK is undeniable, a key challenge to realising our ambitions in this area is the ability to develop a quantum workforce of capable physicists, engineers, computer scientists, and mathematicians with both the requisite expertise in quantum information science and expertise in the technologies that will realise it. In addition, the leaders of the UK's quantum future must possess critical professional skills: they must be excellent communicators, leaders, entrepreneurs, and project managers. To meet this key ambition and its resultant needs, the programme offered by the Quantum Information Science and Technologies Centre for Doctoral Training (QIST CDT) is uniquely positioned to deliver the diversity of skills and experience needed to supply the UK with internationally renowned QIST leaders across policy, innovation, research, entrepreneurship, and science communication. QIST CDT students will receive academic training delivered by world-recognised top educators and researchers; undertake industrially-relevant training modules co-delivered with industry partners; gain hands-on experience within world-leading quantum research laboratories; receive one-to-one entrepreneurial mentorship; undergo intellectual property and science policy training; undertake on-site industry placements; and complete multi-faceted cohort projects designed to develop multidisciplinary teamwork. This combination of world-class academic research training, which can be undertaken in a vast array of quantum-technology-relevant sectors, with bespoke instruction in professional skills driven by the needs of current and future quantum industry, will produce graduates with a drive to make a difference in Quantum Technologies and the skills to make that happen.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2156902f3c20dd121555dbc42ba233d0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2156902f3c20dd121555dbc42ba233d0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:Low Dee, Vector Homes, Graphene Innovations, Rigaku Europe, Digital University Kerala (KUDSIT) +29 partnersLow Dee,Vector Homes,Graphene Innovations,Rigaku Europe,Digital University Kerala (KUDSIT),Aixtron (United Kingdom),Pilot Group Limited,Imaginatives Group Limited,Graphene Industries Ltd,The University of Manchester,Nyobolt,Carlsberg Group,UoM Innovation Factory Ltd,Watercycle Technologies Ltd,National Physical Laboratory,Nu Quantum,GraphEnergyTech Limited,Park Systems UK Limited,Constructor Technology,Paragraf Ltd,PETRONAS RESEARCH SDN BHD,Frontier IP Group plc,First Graphene (UK) Ltd,Oxford Instruments Plasma Technology,Novalia Ltd,Qinetiq (United Kingdom),Oracle for Research,CamGraPhIC srl,CAMBRIDGE RAMAN IMAGING LTD,Icon Lifesaver Ltd,Emberion Limited,Cumulus Energy Storage Ltd,Molymem Ltd,BeDimensional S.p.AFunder: UK Research and Innovation Project Code: EP/Y035275/1Funder Contribution: 8,847,700 GBPThe proposed CDT will address the UK's need for a pipeline of highly skilled scientists and engineers who will be able to secure the country's position as the global leader in the science and technology of two-dimensional materials (2DMs). Having started with the discovery of graphene at the University of Manchester, this research field now encompasses a vast number of 2DMs, 2DM-based devices, composites, inks, and complex heterostructures with designer properties. Numerous proposals for applications have emerged from research groups worldwide, some of them already picked up and being developed by big established companies and a large number of start-ups (30+ spin-outs just from the two partner universities, Manchester and Cambridge). Many of the ideas put forward require further research and validation and many more are expected to emerge, thanks to the unique properties of this new class of advanced materials and the ability to use modelling to predict new useful combinations of 2DMs or design conditions that bring about new properties. The CDT will support and enable new avenues of research and the development of 2DM-based technologies and work with industry partners to accelerate lab-to-market development of products and processes that leverage the exceptional properties of 2DMs. 2DMoT CDT will be an important part of graphene and 2D Materials eco-system centred on the Manchester and Cambridge innovation networks. It will contribute to the plans by the local authorities, in particular, of the Greater Manchester Combined Authority, to pilot Manufacturing Innovation Networks focused on graphene & nanomaterials, coatings and technical textiles. Industrial co-supervision of research projects will accelerate realisation of new products and technologies enabled by 2DMs, which is key to competitiveness. The CDT will implement a new approach to PhD research training by incorporating individual research projects into several overarching, multidisciplinary research missions with 2-3 CDT students a year joining each research mission, either at Manchester or Cambridge, and gradually forming 8-10 researcher teams incorporating CDT students at different stages of their PhD and involving several research groups with complementary expertise, working collaboratively and sharing ideas and knowledge. All students will have opportunities to shape their own projects and overall research missions, creating an inclusive environment, ideal for peer-to-peer learning and innovation. A 6-months-long formal taught programme at the start of PhD will be complemented by further advanced skills training during the research phase, transferrable skills training and research schools and workshops organised jointly with leading international research centres and the CDT business partners. Environmental sustainability of the developed products and technologies will be a focal point of the CDT programme, with specialist training and considerations of sustainability embedded in all research missions. Training in innovation and commercialization of research, project management, responsible research and innovation, and dealing with the media will be mandatory for all CDT students. To ensure that the benefits of CDT training are available to a wider group of PhD researchers, a range of CDT events - residential conferences, seminars, research workshops, commercialisation training - as well as some of the courses, will be open to non-CDT students whose research interests are aligned with the CDT research missions. Outreach events will form an important part of CDT activities, in particular participation in Science festivals, British Science weeks, Bluedot, Science X, with exhibits showcasing the science of 2DMs and their developing applications.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1a833e3cdbc3b7384c497e9ae3a8c923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1a833e3cdbc3b7384c497e9ae3a8c923&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right