Powered by OpenAIRE graph

National Composites Centre

Country: United Kingdom

National Composites Centre

41 Projects, page 1 of 9
  • Funder: UK Research and Innovation Project Code: EP/R021597/1
    Funder Contribution: 101,082 GBP

    The use of advanced composites in commercial aircraft structures has significantly increased in recent years through products such as the Airbus A350XWB, where they make up 52% by weight of the structure. But the transition over from metals has actually been slower than anticipated, despite the advanced composites promise of offering lower weight components that are capable of exhibiting high strength-to-weight ratios & high stiffness. This slow uptake is primarily due to the high cost of manufacturing; and is now more of a concern, as when designing a new aircraft the mechanical properties are not the only aspect taken into consideration. Composites must be cost-competitive. Historically, civil aircraft design and manufacturing was largely conducted in-house and relied heavily on manual intervention, especially during assembly. This reliance on manual operations came as a result of long development times and ongoing aircraft design iterations, which together rendered the mass production of aircraft costly and infeasible. In the past decade a transformation has occurred as aircraft manufacturers see higher sales and uptake; and are increasingly subcontracting parts and systems to suppliers. Boeing for example increased their outsourcing from 35-50% for the 737 program to 70% for the 787 program. Whilst this has provided cost saving opportunities for the Original Equipment Manufacturer (OEM), it adds pressure to an already restricted supply chain to deliver parts that are not only made to specification but governed by shortening times and cost reductions. It has also demonstrated supply chain inefficiencies in the global industry, and that the need for cost-effective manufacturing methods tailored for smaller and medium sized suppliers has become more evident. For these companies, the cost of rearranging the work space and of purchasing new equipment is quite restrictive, especially if manufacturing small batches of components, as they may not reach their break-even point. In order to meet the projected growth & demand for the aerospace industry, and guard against projected skills shortages, manufacturing techniques need to be developed to allow for greater efficiency, affordability, and greater consistency in quality. The ultimate goal is to produce high quality components right first time, consisting of the proper dimensions and performance properties that are not only reproducible, but economically viable. Composites usage is particularly dominant in secondary structures or sandwich panels. The complex geometries associated with these restrict the use of automation and so hand layup dominates the manufacturing process. It involves forming a pre-impregnated cloth over a geometry into as near-net shape as possible, using shear as the main in-plane deformation mode. Difficulty in manufacture arises from geometrical clashes (imposed by structural and aerodynamic performance of the aerofoil, resulting in tight dimensional tolerances); audit trails (imposed by the OEM), and; their low-cost development (company imposed). These coalesce such that the majority of the total manufacturing cost for aircraft composite components resides in secondary structures, dependent on inefficient design and manufacturing processes based on tacit skills and understanding. To break this vicious cycle for price-critical parts, either low-cost manufacturing methods or designs for manufacturability need to be implemented. This research targets the latter, developing a new toolset capable of informing for intelligent design processing that considers manufacturing capabilities earlier, and delivering the design intent to manufacturing as functional unambiguous workflow instructions enabling right first time yields. A new process towards composites DfM will be developed through this research, and in enabling gathered information to be exploited in simple formats, a user-based knowledge system will be achieved.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S004688/1
    Funder Contribution: 169,548 GBP

    It is well established that delamination damage is the dominant failure mechanism in laminated composites. There have been numerous technologies proposed to address this failure mechanism, with many state-of-the art methods such as Z-pinning, tufting, nano fibre reinforcements all suffering from problems such as manufacturing challenges, inconsistent toughening performance and expensive materials and infrastructure costs. For this reason there has been very little commercial use of these technologies in industry. There is clearly a need for a low cost, consistent and widely applicable through thickness reinforcement technology for composite structures. In this proposal a new concept is introduced which can deliver through thickness aligned micro-fibre reinforcements at the critical interfaces within a composite material. Using electromagnetic field alignment, ferromagnetic micro-fibres will be vertically orientated within a polymer resin film which can then be interleaved in a composite material during the standard layup process. During the cure process, the softening of the resin and the applied pressure will consolidate the layers, forcing the aligned reinforcements to penetrate the adjoining laminates, providing a mechanism which will significantly increase the fracture toughness of composite materials. With this approach, highly damage tolerant composite structures can be produced at a fraction of the costs relative to current technologies. Several practical and scientific challenges will be investigated in three key objectives: (1) Identify ferromagnetic micro fibre materials with high magnetic field susceptibility, high stiffness and strength and compatible with a suitable thermosetting resin system (2) Produce VAFeR films with capability to control various operating conditions for alignment and integration of the micro-fibres within a partially cured thermosetting resin film (3) Investigate effect of micro-fibre length and volume content on the mechanical performance of composite laminates with the application of the VAFeR films This is an exciting opportunity to develop a new cost effective procedure with capability to significantly increase the damage tolerance capability of composite structures, a potentially transformative prospect for the UK composites research and industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/X024059/1
    Funder Contribution: 538,246 GBP

    The next generation of energy-efficient aircraft require highly optimised aerodynamic wing surfaces engineered to increasingly tight tolerances manufactured at increasing rates of production. To facilitate this, high accuracy spatial information is required both at component interfaces and product critical surfaces to understand the manipulations needed to fit part-to-part, the impact of resultant distortions in the parts and any necessary rework. Downstream opportunities extend over the manufacturing cycle, to support adaptations in product design, materials and processes needed to optimise quality, cost, and productivity. Challenging this activity are existing large volume metrology systems and deployments failing to achieve diverse engineering requirements; being too costly or needing deployments that disrupt or stop the manufacturing process. For current products metrology activities in aircraft wing manufacture are largely turn-key and consume over 25% of Airbus production time. In a systems paradigm that mirrors satellite navigation data and its now ubiquitous reliance for in-car and mobile phone navigation, improvement in productivity and flexibility to support new processes requires richer trustworthy spatial data from systems that are embedded into manufacturing infrastructure. Whilst capable systems are available at small to medium volumes and with innovation funding will evolve into industrial sensor networks, a research and technology gap in large-volume marker less surface metrology limits opportunity. Addressing the "tools to support the verification of models, metrology in manufacturing" theme of this EPSRC call, our proposal seeks to close the gap. Our vision is to embed low-cost Reflectance Transformation Imaging guided by virtual optical metrology instrument models into factory spaces to achieve accuracies of the order of a few micrometres over areas of several tens of square metres. Airbus supports the PI through an REng/Airbus Chair in Large-Volume Metrology enabling R&T collaboration and access to specialists including manufacturing architects who design the digital factories of the future. Together we have co-created this proposal and will steer the fundamental research needed to develop and demonstrate scalable low-cost full-field optical metrology based on Reflectance Transformation Imaging (RTI) to support the data driven manufacture of large-volume surfaces underpinned with local metric uncertainty verification. The outcome will be validated direct optical surface measurement to unprecedented levels of accuracy across the wide variety of surface materials, forms and optical finishes that characterise advanced multi-material aerostructures. In parallel it will help inform the design of the manufacturing spaces and embedded facilities necessary to enable agile manufacture of next generation wing products in the emerging Fly Zero strategy. Close working with partners Airbus, NCC and Taraz Metrology against industry use cases to deliver demonstrators of the developed technologies will open opportunities to extend capabilities arising from our research into other sectors where manufacture of cutting-edge high-performance digitally engineered surfaces are central to success. Examples include wind energy, shipbuilding, and onsite fabrication.

    more_vert
  • Funder: UK Research and Innovation Project Code: AH/W000555/1
    Funder Contribution: 202,266 GBP

    This project constitutes a second phase of a Leadership Fellowship award exploring innovation possibilities with the ceramic extrusion process. The method has been utilised for many decades in mass productions of architectural components, such as bricks and tiles. The process presents significant creative and commercial opportunities with the potential to be utilised in many other contexts and applications. Despite this innovation potential ceramic profile extrusion is significantly under researched, this research seeks to address this knowledge gap. The proposed fellowship is centred on investigations into how digital fabrication technologies can be the basis for developing new approaches and materials via interdisciplinary applications for the process. The project builds on successful findings from the initial fellowship period which established a series of tools and processes to aid further research and utilisation of the ceramic profile extrusion method. These tools include innovative methods for 3D printing the extrusion profiles, known as 'dies', as well as the development of software scripts which facilitate non-specialists to design the dies through simple numeric controls. The first phase also established a concept for a low-cost hydraulic extrusion system. This system, combined with the software script and the methods for 3D printing the extrusion die, constitute a rapid development workflow that enables individual practitioners as well as industrial companies to engage in this innovation with the ceramic extrusion process. This second stage fellowship will provide the opportunity to build on the very promising potential of these results and expand the explorations into hybrid approaches introducing deployable elements to the extrusion dies. These explorations will seek to investigate the potential creation of hybrid extrusion and die moulding production methods - thus extending both the creative and technical application possibilities. Exploration of these tools, materials and processes into commercial contexts will be aided by extending successful research collaborations from phase one with the sector leading companies Wienerberger and Arup. In addition, this project will utilise the knowledge foundations from phase one in entirely new interdisciplinary research partnerships to explore novel contexts and applications for the knowledge foundation. These include collaboration with the National Composite Centre (NCC) to explore the use of the ceramic extrusion process with composites for the production of parts for high performance applications in sectors such as aerospace and nuclear energy. Furthermore, this project will explore utilisation of the distinctive qualities of clay/ceramics to address the challenges in relation to sustainability and low carbon construction collaborating with Plymouth University's CobBauge project to investigate the possibility of extruding the traditional building material cob into building components. Another main aim of this project is to further develop Dr Tavs Jorgensen's capacity for delivering interdisciplinary research leadership. This will be ensured through a range of activities including masterclasses, workshops and publishing research. This aim will be addressed in collaboration with other researchers across different disciplines, other HEIs and with world leading industry partners. The ambition is to develop capacity to actively raise the quality of the research environment in this interdisciplinary research area. The project aims to be field-defining research that produces a new body of knowledge with a clear aim of extending the interdisciplinary research approach as wide as possible in the exploration of novel application for the ceramic profile extrusion process - in particular seeking to utilise the specific characteristic of ceramics to address the urgent issue of sustainability in design, manufacturing and construction.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M002489/2
    Funder Contribution: 628,701 GBP

    The future of manufacturing depends on a number of technological breakthroughs in robotics, sensors and high-performance computing, to name a few. However, nothing will have a greater impact on how things are made, and their subsequent capability, than the constituent materials from which they are constructed. This Fellowship will advance the underpinning engineering science, and demonstrate the potential of 'bottom-up' additive manufacturing to produce advanced metamaterials (materials not found in nature or engineering). To achieve this outcome, active advanced multifunctional materials, exhibiting programmed intelligence in complex 3D architectures, will be developed through creative manufacture. These new modes of assembly, i.e. manufacturing as a 'growth process', will rely on smarter materials, not machines of increasing complexity.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.