Powered by OpenAIRE graph

Procter and Gamble UK

Country: United Kingdom

Procter and Gamble UK

13 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/K016784/1
    Funder Contribution: 1,633,240 GBP

    The potential areas for applications of polymer nanocomposites (a plastic containing a nanometre scale filler material) extend from aerospace and automotive industries to medical and consumer products. Such nanocomposites offer exciting step changes in both structural and functional material performance because the interfacial area between the nanofiller and polymer is greater by orders of magnitude when compared to traditional composites containing glass or carbon fibre filler. Graphene promises to be the ultimate nanofiller having outstanding and often unsurpassed electronic, mechanical and thermal properties. However, to date true commercial applications have yet to be realised or implemented due to lack of understanding in how the material and dispersions behave under melt conditions. This project will tackle these issues head-on to develop a high-volume, low-cost graphene engineering technology that will enable commercialisation of the unique structural properties of graphene nanocomposites in consumer products. Consumer product applications are the focus of this project as they are early adopters of new technology and offer an ideal market for testing new developments. Melt processing is crucial in determining the performance of the final consumer product. The comparable length-scales between graphene nanofillers and the polymer chains provide a new challenge for composite formulation and processing: strong flows impact the stretching of polymer chains and the ordering, orientation and dispersion of the nanofiller. Control of these nanoscale phenomena by combining process-engineering technologies with new knowledge and methodologies from the chemical and physical sciences provides a platform for realising the commercial potential of graphene nanocomposites: enhanced mechanical, anti-static and barrier properties would deliver consumer benefits through better product performance and extended product life and business and environmental benefits through less raw material being consumed and transported. The industrial partners Procter and Gamble (P&G), a global consumer goods company; Dyson, a domestic appliance technology company; and Durham Graphene Science (DGS), a large-scale producer of graphene will work directly alongside the academic partners in the formulation, processing and prototyping of the graphene composites to deliver maximum impact in potential new consumer products.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M022447/1
    Funder Contribution: 1,379,310 GBP

    Particles of differing size or density often segregate in industrial flows such as chutes, silos, conveyor belts and rotating drums. This is the single biggest cause of material non-uniformity, which poses significant problems in handling and processing the grains, leading to plant downtime and product wastage. The most common form of segregation occurs in surface avalanches, which develop whenever a static granular material is tipped above its angle of repose. For example, pouring one's muesli into a bowl at breakfast! These avalanches are very efficient at sorting particles by size, with the large ones rising to the surface and the small ones percolating down to the base. The density of the grains may enhance or counteract this effect. When these flows come to rest a rich variety of particle size and density distributions develop in the deposit, sometimes with large regions of just one particle type. This naturally presents a major problem in processes that are supposed to be well-mixed. Understanding the segregation process and being able to model it effectively is the first step in being able to develop strategies to mitigate its effects. This proposal aims to use a powerful combination of small scale experiments, theory, continuum simulation and discrete element simulations (where the interactions of every single particle are modeled) to determine the functional dependence of the segregation rates on particle properties, as well as the applied shear-rate and pressure. The resulting mathematical model will then be applied to more complex flows, where there is mass transport between the the surface avalanche and the static, or slowly moving, grains beneath. This presents the project with its biggest challenge, because the rheology of granular materials is still very poorly understood, compared to fluids, which makes simulating the flow in a silo problematical. Over the past decade there has however been significant progress in the development of the so called mu(I)-rheology, which works over a large range of parameter space. Our aim is to regularize the model, by including additional physics, so that it can be applied in all regions of the flow and hence solve for the bulk velocity field. This will then allow the evolving particle-size and density distribution to be computed, so that we can understand in detail how pockets of just one particle type form. With our industrial partners we develop mitigation strategies, that use our knowledge of segregation to design clever chutes and silos that greatly reduce its effects.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015498/1
    Funder Contribution: 4,671,360 GBP

    Chemical Biology is a strategically important area of research for the UK that looks at the development and application of novel tools and techniques for the study of molecular interactions in biological systems. Graduate training in Chemical Biology will play a crucial role in driving innovation and transforming the design process in the biotech and medical technology, agri-science and personal care sectors, as well as stimulating the creation of new start-up enterprises in the UK. In order to meet these skills a new generation of PhD graduates in Chemical Biology must be trained who are able to connect the scientific and commercial/industrial sectors whilst still being supremely well equipped to work across the Physical and Life Sciences interface, allowing for multiple forms of translational activity. This crucial skills gap will be addressed by the new CDT in "Physical Sciences Innovation in Chemical Biology for Bioindustry and Healthcare" which will train > 90 PhD students over the next 5 years, supported by the multi-disciplinary environment of the world leading Institute of Chemical Biology (ICB) at Imperial College. The multidisciplinary nature of Chemical Biology and the translational challenges that it poses to students working at the interface between the physical and life sciences and between the academic and commercial worlds makes a CDT structure highly appropriate for supporting student development. Such multi-disciplinary training at this interface is vital to enabling the UK to adapt to the pace of technological change in the life, personal care and agri-sciences sectors. Furthermore, the particular societal, ethical, industrial and entrepreneurial aspects associated with research that will underpin these new technologies requires a bespoke approach that is most effectively delivered in a CDT context. The ICB and its strategic partners have together crafted a 4-year training and research programme (MRes + 3 Year PhD), which will provide first-hand experience of multi-disciplinary translational research, research leadership, science communication, entrepreneurialism and business skills. This includes technology development in Fab lab type environments, science communication training in collaboration with the BBC, industry led innovation workshops, entrepreneurship training and a "Dragons Den"-type competitions for student-led IP. In addition, we will implement the EVOLVE programme, a journey tailored to the individual designed to give experience of entrepreneurial activities, policy making, media/outreach, industrial research, or research within international academic institutions in the context of achieving a particular goal selected by the CDT student. This closely knit cohort of students will be supported by an integrated community of over 120 research groups from all three faculties across Imperial College. These activities will be further enhanced by the new dedicated Laboratory for Translational Molecular Research (LTMR). The tools and technologies that will emerge from the research programme of the CDT will support drug, agrichemical and personal care product discovery through the development of new functional screens, target validation assays, predictive artificial biomimetic models and by providing insights into potential novel targets. They will also assist and advance basic biology, diagnostic technologies, optical finger printing technologies for label free tracking of biomolecules, smart biodelivery systems with tailored release kinetics, small molecule-membrane protein screening assays, in-vitro screens for the non-specific binding of drug molecules, the discovery of biomarkers and offer access to a new suite of quantitative dynamic molecular information.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K021966/1
    Funder Contribution: 3,403,310 GBP

    We propose to create the world's first broad spectrum sensor technology - the Multi-Corder. We will do this by exploiting and advancing leading-edge microelectronic engineering. The world of electronics is dominated by complementary metal oxide semiconductor (CMOS) technology. CMOS has made modern computing and communications possible and has also made an enormous impact on sensing technology such as the digital camera chip. Most recently CMOS has enable the development of the personal genome machine - a next generation sequencing system. We propose to create technology to sense the personal metabolome. This is important since where the genome may indicate an individual's propensity towards a disease, the metabalome is an immediate measurement of body function, hence provides a means of diagnose. Not all possible afflictions are measurable using the metabalome. Using the same fundamental technology we also propose to detect microbial infectious agents. Bacterial affliction already in the body, or in the environment (e.g. a hospital ward) will be targetted, alleviating major problems such as hospital acquired infection. Further beneficiaries are in point of use diagnostic tools and highly portable systems capable of use in the developing world where there is limited infrastructural support. We also foresee yet more ambitious outcomes from the research, and we expect to made progress towards their realisation. We envisage that once a full measurement and analysis of a patient or a contaminated area is achieved, the Multi-Corder technology will underpin new methods of chemical synthesis for drugs. We will demonstrate the use of the technology for direct, high-speed, visualisation of chemical activity, and the means by which the data can be used to control the chemical process required for synthesis. The targets that we will address will take advantage of the ability of microelectronics to make many (millions if needs be) of devices on a single chip, or to integrate diverse technologies together. The core semiconductor technology will be augmented by chemical, lithographic and bio-technologies in order to build complex functions. Our approach is based on a combination of established track record, new insights, and emergent technologies for which we have established trial feasibility. Using our current knowledge as a springboard, we will exploit the flexibility and collaborative framework that a Programme Grant will afford us to create an exciting new technology.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N025261/1
    Funder Contribution: 1,741,950 GBP

    Solid dose forms are the backbone of many manufacturing industries. In pharmaceutical therapeutics, tablets, capsules, dry powder inhalers and powders for re-suspension cover the vast majority of the £5.6Bn sales by this industry in the UK. Food (sales £67Bn) is the single largest industry of the UK manufacturing sector which totalled £365Bn sales in 2014 (Office of National Statistics). In all these manufacturing processes and in final use, the physical behaviour of the powder is at least as important as the chemistry. Stability, weight and content uniformity, manufacturing difficulties and variable performance are determined by decisions made during the formulation process Manufacturing problems are ubiquitous; the Rand report (by E.W. Merrow, 1981) examined powder processes and found on average 2 year over-runs to get to full productivity, and development costs 210% of estimates, due to incompatibility between powder behaviour and process design. In the intervening years, plant engineering techniques have developed, but the rationalisation of formulation decisions has never received more than cursory, empirical study. This project proposes to develop a Virtual Formulation Laboratory (VFL), a software tool for prediction and optimisation of manufacturability and stability of advanced solids-based formulations. The team has established expertise in powder flow, mixing and compaction which will be brought together for the first time to link formulation variables with manufacturability predictions. The OVERALL AIMS of the project are (a) to develop the science base for understanding of surfaces, particulate structures and bulk behaviour to address physical, chemical and mechanical stability during processing and storage and (b) to incorporate these into a software tool (VFL) which accounts for a wide range of material types, particle structures and blend systems to enable the formulator to test the effects of formulation changes in virtual space and check for potential problems covering the majority of manufacturing difficulties experienced in production plants. The VISION for VFL is to be employed widely in the development process of every new formulated powder product in food, pharmaceuticals and fine chemicals within five years of the completion of this project. VFL will consider four processes: powder flow, mixing, compaction and storage; and will predict four manufacturability problems: poor flow/flooding, segregation/heterogeneity, powder caking and strength/breakage of compacts These account for the majority of practical problems in the processing of solid particulate materials The OVERALL OBJECTIVES of the project are: (a) to fill the gaps in formulation science to link molecule to manufacturability, which will be achieved through experimental characterisation and numerical modelling, and (b) establish methodologies to deal with new materials, so that the virtual lab could make predictions for formulations with new materials without extensive experimental characterisation or numerical modelling. This will be achieved through developing functional relationships based on the scientific outcomes of the above investigations, while identifying the limits and uncertainties of these relationships.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.