Powered by OpenAIRE graph

Scottish Power

13 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/D078547/1
    Funder Contribution: 737,554 GBP

    To build new research capability in order to address nationally strategic objectives for the support of health of discipline in priority areass such as electrical power engineering and energy. Such new capacity would be intended to undertake research and support the growth of UK industry innovation. This is a project that requires major investments to provide adequate breadth and depth in order to increase prospective research impacts, therefore consortium partners (apart from EPSRC) include Rolls-Royce, ScottishPower, National Grid and Strathclyde University. The proposed investment acknowledges that there has been a serious reduction of academic staff specialising in electrical power engineering in UK-HEIs. It is also recognised that, in order to retain and develop electrical power research capability, there is a need to take a joint HEI, industry & government approach to investment and commitment in this area. The support of research centres with the necessary critical mass to undertake basic, strategic and applied research is seen as a strategic imperative. UK industry and society will benefit greatly from a sustainable, active, internationally leading research base in electrical power engineering and energy systems. In addition to the erosion of the electrical power research base, there is a serious reduction in the undergraduate and postgraduate populations that new, active academic staff could help to address (c.f. recent IEE review and subsequent establishment of the Power Academy). It is important to note that these principles are also entirely consistent with subsequent objectives that have emerged in the EPSRC Science and Innovation Awards scheme. As such, the proposed programme, incorporating major industrial funding, provides additional value and scope to complement the first round EPSRC Science and Innovation Awards. The funding commitment from each of the industrial partners along with direct Strathclyde commitments will provide significant added value to the proposed EPSRC Star investments in terms of research scope, scale and critical mass.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G062889/2
    Funder Contribution: 593,659 GBP

    By 2015, the UK is expected to face an electrical power shortage of over 20GW, based on projected economic growth and projected life expectancy of a number of existing power plants. There is currently an exceptionally wide variety of new generation technologies being considered. Nuclear power generation will take a long time from build to generation; in fact, the earliest estimated time of generation from new nuclear power stations would be 2018. Renewable energy alone is not capable of generating enough electricity to fill this gap. Around 40% of the current electricity is generated by gas/oil in the UK, but the price of gas/oil faces a huge fluctuations and uncertainty. So gas/oil is not the suitable choice to fill the big electricity generation capacity gap. To meet the various requirements in electricity demand, environment, finance and performance, coal fired power generation is really in need, actually the realistic choice, for compensating the generation gap. Plans have been made for new coal-fired power stations to be built in the UK in the near future. In China, more than 70% of electricity is currently generated by Coal. New coal fired power stations bring into generation almost every month in China. In American, 335,830MW electricity is generated by coal. It is likely that coal remains a dominant fuel for electricity generation from many years to come. Coal is, no doubt, playing an important role in electrical power generation but we must make it cleaner. Supercritical coal fired plant technology is one of the leading options with improved efficiency and hence reduced CO2 emissions per unit of electrical energy generated. Indeed, power plants using supercritical generation have energy efficiency up to 46%, around 10% above current coal fired power plants. On the other hand, this technology costs less than other clean coal technologies and can be fully integrated with appropriate CO2 capture technology in a timely manner. In addition to higher energy efficiency, lower emission levels for supercritical plants are achieved by using well-proven emission control technologies. However, power plants adopting supercritical boilers face great challenges from the UK National Grid Code (NGC) compliance. The UK grid code is far more demanding than in other European countries due to the relatively small scale of the UK electricity network. The most significant issue for a supercritical steam plant is the absence of the stored energy provided by the drum of a conventional plant. As a result the plant would struggle to produce the 10% frequency response requirement in the Grid Code quickly enough Ensuring NGC compliance for supercritical boiler power generation is an important pre-requisite for gaining acceptance in the UK for this highly promising cleaner coal technology. The generation companies have already proposed the Grid Code review request to NGC for the possibility of grid code change to accept supercritical plant There is an urgent demand to conduct the whole process modelling and simulation study to get a clearer picture of the dynamic responses of the supercritical coal fired power plant and to study the feasible strategy to improve the dynamic responses. Also, it is essential to establish the university based research capacity in the UK to provide research solutions in response to the challenges arising from adopting supercritical technology in electrical power generation and also to provide the training needed for future electrical power engineers. Currently, no supercritical or ultra-supercritical boilers operate in the UK, which make it difficult for UK researchers alone to conduct the above proposed study. There are more than 400 such units worldwide, with China operating 24 of them and more to be built. So this proposal is proposed to collaborate with Chinese top universities for this challenging research.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E04011X/1
    Funder Contribution: 6,876,790 GBP

    FlexNet has been set the goal of researching the future form of the electricity network. This is a great challenge because electricity networks are formed from long lifetime equipment that will often be in place for more than 50 years and which costs a great deal to replace. Much of the UK network was constructed in the 1960s and 1970s and falls due for replacement soon. This is both an opportunity and a threat. The plans for replacement must stand the test of time or future generations will face a large bill for making changes. We are at a point where the future of electricity generation is uncertain. We know that low-carbon energy is the objective but the network required to support offshore wind is very different from the network to support domestic-scale fuel cells. The key will be to plan, design and build networks that are sufficiently flexible to meet several quite different scenarios. There are limits to the flexibility though. First, flexibility generally requires more investment for which electricity consumers ultimately pay. Second, electrical networks are major projects that impact local communities and those communities' have important views on what technology is acceptable. Third, flexibility calls for a far greater level of real-time control of the network which poses challenges in analysis and implementation. FlexNet will research the technologies to provide flexibility, the market mechanisms through which investment is encouraged efficiently and the way in which public attitudes might shape what can be done. FlexNet is a consortium of universities, electrical network operators, equipment manufacturers and NGOs. The seven universities combine expertise in electrical engineering, economics and social science. The consortium builds on the work of its predecessor, FutureNet.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/H01036X/1
    Funder Contribution: 289,671 GBP

    Many current or projected future land-based renewable energy schemes are highly dependent on very localised climatic conditions, especially in regions of complex terrain. For example, mean wind speed, which is the determining factor in assessing the viability of wind farms, varies considerably over distances no greater than the size of a typical farm. Variations in the productivity of bio-energy crops also occur on similar spatial scales. This localised climatic variation will lead to significant differences in response of the landscape in hosting land-based renewables (LBR) and without better understanding could compromise our ability to deploy LBR to maximise environmental and energy gains. Currently climate prediction models operate at much coarser scales than are required for renewable energy applications. The required downscaling of climate data is achieved using a variety of empirical techniques, the reliability of which decreases as the complexity of the terrain increases. In this project, we will use newly emerging techniques of very high resolution nested numerical modelling, taken from the field of numerical weather prediction, to develop a micro-climate model, which will be able to make climate predictions locally down to scales of less than one kilometre. We will conduct validation experiments for the new model at wind farm and bio-energy crop sites. The model will be applied to the problems of (i) predicting the effect of a wind farm on soil carbon sequestration on an upland site, thus addressing the question of carbon payback time for wind farm schemes and (ii) for predicting local yield variations of bio-energy crops. Extremely high resolution numerical modelling of the effect of wind turbines on each other and on the air-land exchanges will be undertaken using a computational fluid dynamics model (CFD). The project will provide a new tool for climate impact prediction at the local scale and will provide new insight into the detailed physical, bio-physical and geochemical processes affecting the resilience and adaptation of sensitive (often upland) environments when hosting LBR.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G062889/1
    Funder Contribution: 725,442 GBP

    By 2015, the UK is expected to face an electrical power shortage of over 20GW, based on projected economic growth and projected life expectancy of a number of existing power plants. There is currently an exceptionally wide variety of new generation technologies being considered. Nuclear power generation will take a long time from build to generation; in fact, the earliest estimated time of generation from new nuclear power stations would be 2018. Renewable energy alone is not capable of generating enough electricity to fill this gap. Around 40% of the current electricity is generated by gas/oil in the UK, but the price of gas/oil faces a huge fluctuations and uncertainty. So gas/oil is not the suitable choice to fill the big electricity generation capacity gap. To meet the various requirements in electricity demand, environment, finance and performance, coal fired power generation is really in need, actually the realistic choice, for compensating the generation gap. Plans have been made for new coal-fired power stations to be built in the UK in the near future. In China, more than 70% of electricity is currently generated by Coal. New coal fired power stations bring into generation almost every month in China. In American, 335,830MW electricity is generated by coal. It is likely that coal remains a dominant fuel for electricity generation from many years to come. Coal is, no doubt, playing an important role in electrical power generation but we must make it cleaner. Supercritical coal fired plant technology is one of the leading options with improved efficiency and hence reduced CO2 emissions per unit of electrical energy generated. Indeed, power plants using supercritical generation have energy efficiency up to 46%, around 10% above current coal fired power plants. On the other hand, this technology costs less than other clean coal technologies and can be fully integrated with appropriate CO2 capture technology in a timely manner. In addition to higher energy efficiency, lower emission levels for supercritical plants are achieved by using well-proven emission control technologies. However, power plants adopting supercritical boilers face great challenges from the UK National Grid Code (NGC) compliance. The UK grid code is far more demanding than in other European countries due to the relatively small scale of the UK electricity network. The most significant issue for a supercritical steam plant is the absence of the stored energy provided by the drum of a conventional plant. As a result the plant would struggle to produce the 10% frequency response requirement in the Grid Code quickly enough Ensuring NGC compliance for supercritical boiler power generation is an important pre-requisite for gaining acceptance in the UK for this highly promising cleaner coal technology. The generation companies have already proposed the Grid Code review request to NGC for the possibility of grid code change to accept supercritical plant There is an urgent demand to conduct the whole process modelling and simulation study to get a clearer picture of the dynamic responses of the supercritical coal fired power plant and to study the feasible strategy to improve the dynamic responses. Also, it is essential to establish the university based research capacity in the UK to provide research solutions in response to the challenges arising from adopting supercritical technology in electrical power generation and also to provide the training needed for future electrical power engineers. Currently, no supercritical or ultra-supercritical boilers operate in the UK, which make it difficult for UK researchers alone to conduct the above proposed study. There are more than 400 such units worldwide, with China operating 24 of them and more to be built. So this proposal is proposed to collaborate with Chinese top universities for this challenging research.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.