BRITISH SUGAR PLC
BRITISH SUGAR PLC
4 Projects, page 1 of 1
assignment_turned_in Project2013 - 2017Partners:Synthomer Ltd, Koch Industries (United Kingdom), Unilever UK, BRITISH SUGAR PLC, NEXTEK Ltd +10 partnersSynthomer Ltd,Koch Industries (United Kingdom),Unilever UK,BRITISH SUGAR PLC,NEXTEK Ltd,Invista Textiles (UK) Ltd,Unilever UK,Unilever (United Kingdom),DSM RESEARCH B.V.,Plextek Ltd,Associated British Foods (United Kingdom),DSM (Netherlands),Synthomer (United Kingdom),Imperial College London,BRITISH AIRWAYSFunder: UK Research and Innovation Project Code: EP/K014749/1Funder Contribution: 2,402,100 GBPOil is the most important source of energy worldwide, accounting for 35% of primary energy consumption and the majority of chemical feedstocks. The quest for sustainable resources to meet demands of a constantly rising global population is one of the main challenges for mankind this century. To be truly viable such alternative feedstocks must be sustainable, that is "have the ability to meet 21st century energy needs without compromising those of future generations." Development of efficient routes to large-scale chemical intermediates and commodity chemicals from renewable feedstocks is essential to have a major impact on the economic and environmental sustainability of the chemical industry. While fine chemical and pharmaceutical processes have a diverse chemistry and a need to find green alternatives, the large scale production of petrochemical derived intermediates is surely a priority issue if improved overall sustainability in chemicals manufacture is to be achieved. For example, nylon accounts for 8.9% of all manmade fibre production globally and is currently sourced exclusively from petrochemicals. It is one of the largest scale chemical processes employed by the chemicals sector. Achieving a sustainable chemicals industry in the near future requires 'drop in' chemicals for direct replacement of crude oil feedstocks. The production of next-generation advanced materials from the sustainably-sourced intermediates is a second key challenge to be tackled if our reliance on petrochemicals is to end The project will develop new heterogeneously catalysed processes to convert cellulose derivatives to high value platform and commodity chemicals. We specifically target sustainable production of intermediates for manufacture of polyamides and acrylates, thereby displacing petroleum feedstocks. Achieving the aims of the project requires novel multifunctional catalyst technology which optimises the acid-base properties, hydrogen transfer and deoxygenation capability. Using insights into catalyst design gleaned from our previous work, a directed high-throughput (HT) catalyst synthesis and discovery programme will seek multifunctional catalyst formulations for key biomass transformations. Target formulations will be scaled up and dispersed onto porous architectures for study in lab-scale industrial-style reactors. We will also seek to exploit multi-phase processes to improve selectivity and yield. This will be combined with multi-scale systems analysis to help prioritise promising pathways, work closely with industry to benchmark novel processes against established ones, develop performance measures (e.g. life cycle analysis (LCA)) to set targets for catalytic processes and explore optimal integration strategies with existing industrial value chains. Trade-offs between optimising single product selectivity versus allowing multiple reaction schemes and using effective separation technology in a "multiproduct" process will be explored. The potential utilization of by-products as fuels, sources of hydrogen, or as chemical feeds, will be evaluated by utilizing data from parallel programmes.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::39719b6d6adeb8d7a630f48a322c458e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::39719b6d6adeb8d7a630f48a322c458e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2032Partners:Shell Global Solutions UK, Ceres Power (United Kingdom), Engineering For Change, SP Energy Networks, Calix Limited +18 partnersShell Global Solutions UK,Ceres Power (United Kingdom),Engineering For Change,SP Energy Networks,Calix Limited,BP,MPA Cement,SSE plc,Heriot-Watt University,RWE (United Kingdom),Natural Resources Wales,Green Lizard Technologies,CRH Plc,Drax (United Kingdom),CCFE/UKAEA,CENTRICA PLC,BRITISH SUGAR PLC,International Flame Research Foundation,OPITO,Siemens Energy Ltd,VPI Holding,National Carbon Capture Center,The European CCUS Research InfrastructurFunder: UK Research and Innovation Project Code: EP/Y03550X/1Funder Contribution: 9,552,000 GBPThe Centre for Doctoral Training in Green Industrial Futures (CDT-GIF) will deliver the next generation of global leaders in the energy transition, through a world-leading, interdisciplinary whole systems research and training programme to address national and global priorities to realise the green industrial revolution. The CDT-GIF is critically important, as skill shortages are currently limiting the opportunities of the green industrial revolution, adding significant risk of loss of economic and social value. For example, over 350,000 additional jobs (28% professional roles) are required to meet the demands of the current UK industrial cluster decarbonisation projects between 2025 to 2040. Therefore, there is a substantial and pressing demand for training doctoral-level graduates to fill these roles to drive R&D for industrial decarbonisation, lead critical important decarbonisation projects, and prepare future graduates for the net zero agenda. The CDT-GIF directly addresses this and is in closed alignment with the EPSRC mission inspired priority 'Engineering Net Zero' by providing an industry-guided, interdisciplinary training environment in transformative low-carbon technologies that will uniquely train 100 doctoral students, whilst leveraging significant investment from academic and industry partners. Four institutions with global standing in decarbonisation (Heriot-Watt University, Imperial College London, University of Bath and University of Sheffield) have partnered with a comprehensive range of stakeholders to ascertain the critically in-demand skills and knowledge that prospective employers are seeking to deliver net zero industries. These include technically trained on systems thinking, career ready and industry literate, and internationally connected. As a result, we have co-developed a training programme, based on three pillars, that will equip our students with these attributes, namely: (1) a cohort-based whole systems taught training programme (2) metaskills development programme (Net Zero Leadership Programme), and (3) unrivalled international opportunities to visit world-leading facilities, e.g. National Carbon Capture Centre (USA), ECCSEL (European network), Heriot-Watt Dubai campus and UNECE Sustainability Week. The training elements of the programme will run parallel to student's research in order to ensure cohesive learning within and across yearly cohorts, building peer-to-peer networks. A series of activities have been designed to foster a cohesive cohort trained in a diverse and inclusive environment that engenders a culture of environmental sustainability, research trust and responsible research and innovation. The CDT-GIF research and training programme is centred on four technological themes, with one cross-cutting systems theme: (1) Advancing carbon capture, utilisation and storage technologies, (2) Green hydrogen & low carbon fuels, (3) Developing next generation CO2 removal technology, (4) Energy processes, systems integration & resource efficiency, and (5) Integrated thematic areas including socio-behavioural change, policy & regulation and net zero economics related to the four technological themes. Within these themes, students will undertake challenging & original research projects that will be co-created with industrial collaborators to discover transformative, responsible and integrated solutions to achieve net zero. Challenging and original research projects will be rooted in one of these research themes, as well as across three integrated thematic areas and supervised by >75 internationally recognised researchers with excellent track record of doctoral supervision. In summary, CDT-GIF has the capacity, expertise and unique training opportunities to deliver the most comprehensive and transformational Centre for Doctoral Training to realise the green industrial revolution.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4ca8f8063de778564c14a66143479b1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4ca8f8063de778564c14a66143479b1c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2015Partners:Home Grown Cereals Authority, Bioethanol Limited, Associated British Foods (United Kingdom), East Midlands Development Agency, Coors Brewers Ltd +20 partnersHome Grown Cereals Authority,Bioethanol Limited,Associated British Foods (United Kingdom),East Midlands Development Agency,Coors Brewers Ltd,NTU,BP (UK),Coors Brewers Ltd,Ethanol Technology,SABMiller plc,BRITISH SUGAR PLC,DSM Research (The Netherlands),B P International Ltd,DSM (Netherlands),University of Nottingham,SWRI,BIOCONTROL LIMITED,BP (United Kingdom),SABMILLER PLC,BRITISH AIRWAYS,East Midlands Development Agency,Agriculture and Horticulture Development Board,Ethanol Technology,Scotch Whisky Research Institute,Home Grown Cereals AuthorityFunder: UK Research and Innovation Project Code: BB/G01616X/1Funder Contribution: 5,349,450 GBPThere are three main drivers for the development of bioenergy and biofuels in the UK: Energy Security, Climate Change and Rural Development. Demand for oil is rising both from developed and developing countries and renewable alternatives are critical to ensure UK energy-security. Biofuels are fuels that are produced from plant material and are therefore renewable and will contribute to UK energy security. Biofuels also have the potential to deliver significant reductions in emissions provided that all stages of the supply chain are properly assessed and optimised. Lignocellulosic (plant cell wall) material is a valuable source of energy that can be derived from biomass crops and agricultural residues such as straw and spent grains. In addition this material may be derived from waste produced by industries that utilise wood and its derivatives. Harnessing the potential of lignocellulosic materials for the production of biofuels requires the deconstruction of plant cell walls using biological, chemical and physical processes to produce a fermentable feedstock. Furthermore it is essential that the processes developed limit the formation of toxic by-products (known as inhibitors) that reduce the potential for efficient fermentation. The fermentation of the liberated feedstock requires the development of appropriate strains that can use the range of sugars that comprise the cell wall whilst tolerating the process and product derived stresses. It is now vital that the UK addresses the challenge of effectively using lignocellulosic feedstocks to generate biofuels. To address this need, we will identify methods of feedstock production from plant cell wall materials that maximise sugar release but limit inhibitor formation. Furthermore we will develop super-tolerant yeast strains that can optimally ferment a range of sugars to form the biofuel ethanol. To achieve these aims Nottingham will build UK capacity in bioenergy and biofuels expertise by recruiting and training new talent and collaborating with multiple universities, institutes and companies. We will harness Nottingham's world class expertise in Fermentation, Microbiology and Biochemical Engineering, in close collaboration with Food scientists, Agricultural scientists and Social scientists. The University of Nottingham, which has international level researchers in all of these areas, will work in close collaboration with the Universities of Bath, Cambridge, Dundee, York, Newcastle and Surrey and Universities and Institutes in Africa, Europe, New Zealand and the USA. We will also work closely with Industry. We will focus on the generation of bioethanol from the lignocellulosic biomass including excess straw, spent grains and waste generated from food production. The processes used for this conversion will be optimized to reduce greenhouse gas emissions and maximize energy output. Waste materials produced from the process will be harnessed by identification of potential co-products streams including the production of materials for the construction industry and to produce non-liquid fuels. We propose to: (1) increase the UK scientific expertise in lignocellulosic digestion and fermentation; (2) develop the scientific foundations of technologies by identifying robust yeast strains that can be improved to enable them to utilize lignocellulosic feedstocks (3) ensure that the processes developed maximise energy outputs and minimise greenhouse gas emissions; and (4) provide avenues for the implementation of these technologies in industry whilst actively communicating our research with the wider global community.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::920d49937b3db68cfb9944ef4e240da0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::920d49937b3db68cfb9944ef4e240da0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2018Partners:ALMAC SCIENCES, AstraZeneca (United Kingdom), Almac Group Ltd, ASTRAZENECA UK LIMITED, BRITISH SUGAR PLC +23 partnersALMAC SCIENCES,AstraZeneca (United Kingdom),Almac Group Ltd,ASTRAZENECA UK LIMITED,BRITISH SUGAR PLC,GlaxoSmithKline (United Kingdom),Innovate UK,Ingenza Ltd,CHEMISTRY INNOVATION LIMITED,Associated British Foods (United Kingdom),Biocatalysts Ltd,CHEMOXY,BRITISH AIRWAYS,CPI,Process Systems Enterprise (United Kingdom),Chemoxy (United Kingdom),AstraZeneca plc,Centre for Process Innovation,Process Systems Enterprises Ltd,TMO Renewables Ltd,UCL,TMO Renewables (United Kingdom),GlaxoSmithKline PLC,Ingenza Ltd,I.G.CATALYSTS LTD,Chemistry Innovation,GSK,Centre for Process Innovation CPI (UK)Funder: UK Research and Innovation Project Code: EP/K014897/1Funder Contribution: 1,923,250 GBPThe chemical and pharmaceutical industries are currently reliant on petrochemical derived intermediates for the synthesis of a wide range of valuable products. Decreasing petrochemical reserves and concerns over costs and greenhouse gas emissions are now driving the search for renewable sources of organic synthons. This project aims to establish a range of new technologies to enable the synthesis of a range of chemicals from sugar beet pulp (SBP) in a cost-effective and sustainable manner. The UK is self-sufficient in the production of SBP which is a by-product of sugar beet production (8 million tonnes grown per year) and processing. Currently SBP is dried in an energy intensive process and then used for animal feed. The ability to convert SBP into chemicals and pharmaceutical intermediates will therefore have significant economic and environmental benefits. SBP is a complex feedstock rich in carbohydrate (nearly 80% by weight). The carbohydrate is made up of roughly equal proportions of 3 biological polymers; cellulose, hemicellulose and pectin. If the processing of SBP is to be cost-effective it will be necessary to find uses for each of these substances. Here we propose a biorefinery approach for the selective breakdown of all 3 polymers, purification of the breakdown compounds and their use to synthesise a range of added value products such as speciality chemicals, pharmaceuticals and biodegradable polymers. It is already well known that cellulose can be broken down into hexose sugars and fermented to ethanol for use in biofuels. Here we will focus on the release of galacturonic acid (from pectin) and arabinose (from hemicellulose) and their conversion, by chemical or enzymatic means, into added value products. We will also exploit the new principles of Synthetic Biology to explore the feasibility of metabolically engineering microbial cells to simultaneously breakdown the polymeric feed material and synthesise a desired product, such as aromatic compounds, in a single integrated process. In conducting this research we will adopt a holistic, systems-led, approach to biorefinery design and operation. Computer-based modelling tools will be used to assess the efficiency of raw material, water and energy utilisation. Economic and Life Cycle Analysis (LCA) approaches will then be employed to identify the most cost-effective and environmentally benign product and process combinations. The project is supported by a range of industrial partners from raw material producer to intermediate technology providers and end-user chemical and pharmaceutical companies. This is crucial in providing business and socio-economic insights regarding the adoption of renewable resources into their current product portfolios. The company partners will also provide the material and equipment resources for the large-scale verification of project outcomes and their ultimate transition into commercial manufacture.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b09f1fed9cabea4622ad54b2dc1eba2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b09f1fed9cabea4622ad54b2dc1eba2b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu