Universidade de Vigo
Universidade de Vigo
3 Projects, page 1 of 1
assignment_turned_in Project2014 - 2017Partners:Alfred Wegener Institute (Helmholtz), FSC, Nat Inst of Oceanography and Geophysics, Universidade de Vigo, Universidade de Vigo +7 partnersAlfred Wegener Institute (Helmholtz),FSC,Nat Inst of Oceanography and Geophysics,Universidade de Vigo,Universidade de Vigo,British Antarctic Survey,Helmholtz Association of German Research Centres,AWI,National Institute of Oceanography and Experimental Geophysics,NERC BRITISH ANTARCTIC SURVEY,Alfred Wegener Inst for Polar & Marine R,NERC British Antarctic SurveyFunder: UK Research and Innovation Project Code: NE/J006548/1Funder Contribution: 282,013 GBPThe biggest uncertainty in predictions of sea-level rise is what the contribution will be from the great ice sheets on Antarctica and Greenland as climate warms. The West Antarctic Ice Sheet and the Antarctic Peninsula Ice Sheet are the cause of greatest concern, as they are showing signs of significant ice loss and there are theoretical reasons for expecting them to be most vulnerable. Important sources of information for helping to predict how these ice sheets will change as climate warms are records of their response to past climate changes contained in sea bed sediments around Antarctica. Such records extend further back in time than ice cores from the ice sheets themselves. They can also show how the margins of the ice sheets interacted with changes in ocean temperature and circulation, which recent studies have identified as having an important influence on ice sheets. Although sedimentary records in the shallow seas close to Antarctica have been periodically disturbed or removed by past expansions of the ice sheets, there are places in the nearby deep ocean where sediments have accumulated continuously over millions of years. The international Integrated Ocean Drilling Program is considering a proposal to send a drilling ship to collect long sediment cores from some of these places. However, before this is done additional survey data are needed to find the sites that will provide the most continuous, detailed records and to make sure that it will be safe to drill those sites. In this research proposal we are seeking funding to collect this essential survey data. On the same expedition we also propose to collect short sediment cores for pilot studies to confirm that the analytical methods we intend to apply to the longer drill cores will provide reliable information about sediment ages, past climate and past ice sheet behaviour. One of the major difficulties in studying sediment records from the sea bed around Antarctica has been obtaining reliable ages from the sediments. This is because the types of microfossils that are analysed to determine sediment ages in drill cores from most of the world's oceans are rare or absent in many sediment cores collected near Antarctica. By carrying out detailed survey and studying short cores we hope to identify sites where there are sufficient numbers of these microfossils to apply the standard dating techniques. We also plan to test whether a new method of dating sediments that is based on analysis of their magnetic properties will work in the area of the proposed drill sites. It has recently been shown that in many places analysis of the magnetic properties of sea bed sediments can provide records of past changes in the intensity of the Earth's magnetic field, and comparison of these records to well-dated reference records allows ages to be assigned to sediments throughout a core. By comparing ages obtained using this method with ones obtained from microfossils, where they are present, we will be able to find out how well the magnetic dating method works in the study area. If the magnetic method works well, we will be able to establish detailed age models for drill cores without dependence on microfossils, which will greatly extend the area that can be studied by drilling and allow more detailed records of past changes to be derived from the drill cores.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2114f83665a8604a0c31f1e1aa32eca6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2114f83665a8604a0c31f1e1aa32eca6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2018Partners:Marine Institute, University of California, San Diego, University of Bergen, Universidade de Vigo, MSS +20 partnersMarine Institute,University of California, San Diego,University of Bergen,Universidade de Vigo,MSS,Marine Scotland,Met Office,Helmholtz Association of German Research Centres,University of California, San Diego,Helmholtz Association of German Research Centres,University of Southern Denmark,Marine Institute,MET OFFICE,Met Office,AgriFood and Biosciences Institute,University of Liverpool,University of Southern Denmark,CNRS,University of Liverpool,University of California, San Diego,CNRS,Agri Food and Biosciences Institute,SDU,Universidade de Vigo,ULPGCFunder: UK Research and Innovation Project Code: NE/K002007/1Funder Contribution: 475,489 GBPThe large continental land masses are surrounded by extensive shallow (ca 100m depth) seas known as the 'shelf seas'. These act as the boundary between the massively perturbed terrestrial environment and the vast open ocean marine system, and have huge socio-economic importance. They are the primary regions of human marine resource exploitation, including both renewable and fossil fuel energy sources, recreation, trade and food production. Although comprising only about 5% of the global ocean surface area, the shelf seas provide 90% of the global fish catches which form an important source of food to much of the global population. They also play an important role in the ecosystem services provided by the oceans as a whole, in particular in storing carbon away from the atmosphere. Physical and biochemical processes in shelf seas influence the removal of CO2 from the atmosphere and the subsequent storage of carbon in the deep ocean. Biological growth draws carbon out of the water, which is then replaced by carbon in CO2 from the atmosphere. In the shelf seas this growth is supported by terrestrial and open ocean sources of nutrients, implying intimate roles for both the terrestrial biosphere and the open ocean environment in regulating shelf sea climate services. The oceans can also be a major source or sink for other greenhouse gases, including nitrous oxide (N2O), with the shallow shelf seas thought to play a key role. The spatial extent of the submerged continental shelves varies greatly. The NW European shelf sea is one of the largest and hence is likely to play a significant role in marine biogeochemical cycling, alongside providing a useful model for other systems However, even in this relatively well studied region, we lack a good understanding of the principal controls on the cycling of carbon and the major nutrient elements, nitrogen, phosphorous and silicon. Consequently it is also difficult to predict how the cycling of these elements and hence the carbon removal they support may be altered by ongoing and potential future global change. Our proposal aims to address these uncertainties through a comprehensive study of the cycling of the major nutrients and carbon throughout the water column over the NW European shelf sea system. Through close collaboration with a range of partners, we will undertake a year-long observation programme of the whole NW European continental shelf. We will measure the seawater concentrations of the major forms of carbon and nutrients. Combining these with physical water transports and measured transfer of gases (specifically CO2 and N2O) between the air and sea surface, we will quantify the major fluxes of nutrients and carbon between the shelf sea and both the adjacent deep ocean and atmosphere. This will definitively establish the role of this shelf system in the global carbon and nutrient cycles. We will also undertake 4 dedicated research cruises focused on understanding the seasonal cycle of biological and chemical processing of the different forms of the nutrients and carbon. We will measure the rates at which both the photosynthetic and consumer plankton incorporate nutrients and carbon into their cellular material, and subsequently how the combined activity of this biological/chemical system influences the cycling of the major elements. This will allow us to understand the ways in which the role of the shelf system in global cycles is maintained. The combined work delivered by both this proposal and the other programme workpackages will allow us to identify aspects of the NW European shelf system which may be susceptible to ongoing or future environmental changes. Such knowledge will provide both enhanced scientific understanding and improved predictive tools for policy makers and other stakeholders.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a1aafc1d82d36e2e7626c95363e5829c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a1aafc1d82d36e2e7626c95363e5829c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2025Partners:Lloyd's Register Foundation, Carnegie Clean Energy, Brunel University, Wave Venture Ltd, UCD +79 partnersLloyd's Register Foundation,Carnegie Clean Energy,Brunel University,Wave Venture Ltd,UCD,Aalborg University,NIKU,LR IMEA,Universitat Politècnica de Catalunya,NUIM,Jeremy Benn Associates (United Kingdom),AAU,Swansea University,Cranfield University,Sichuan University,ESI Group (UK),Itasca Consultants (Germany),JBA Consulting,MeyGen Ltd,University of Leuven,CARDIFF UNIVERSITY,University of Cambridge,UC,Airbus (United Kingdom),The University of Manchester,Budapest University of Technology,University of Surrey,University of Cantabria,CRANFIELD UNIVERSITY,AIRBUS OPERATIONS LIMITED,NAFEMS Ltd,HKU,Ramboll Group,DPU,University of Salford,Plymouth University,University of Leuven,UWA,Wave Venture Ltd,Universidade de Vigo,MeyGen Ltd,NREL,UK Association for Computational Mechani,ESI Group (UK),University of Bristol,UK Association for Computational Mechani,OFFSHORE RENEWABLE ENERGY CATAPULT,Offshore Renewable Energy Catapult,Kyoto University,UPC,Southern University of Chile,Dalian University of Technology,CICESE,University of Oxford,Center for Scientific Research and Higher Education at Ensenada,General Lighthouse Authorities,Polytechnic University of Catalonia,General Lighthouse Authorities,UNIVERSITY OF CAMBRIDGE,Airbus Operations Limited,DNV GL Energy,TUHH,Carnegie Clean Energy,Offshore Renewable Energy Catapult,University of Western Australia,University of Cambridge,BUTE,SCU,NAFEMS Ltd,DNV GL Energy,National Renewable Energy Laboratory,Swansea University,Austral University of Chile,University of Surrey,KU Leuven,Cardiff University,Ramboll (Denmark),University of Manchester,University of Bristol,Brunel University London,Universidade de Vigo,Itasca Consultants GmbH,Cardiff University,UCLFunder: UK Research and Innovation Project Code: EP/T026782/1Funder Contribution: 312,511 GBPThe proposed new CCP-WSI+ builds on the impact generated by the Collaborative Computational Project in Wave Structure Interaction (CCP-WSI) and extends it to connect together previously separate communities in computational fluid dynamics (CFD) and computational structural mechanics (CSM). The new CCP-WSI+ collaboration builds on the NWT, will accelerate the development of Fully Coupled Wave Structure Interaction (FCWSI) modelling suitable for dealing with the latest challenges in offshore and coastal engineering. Since being established in 2015, CCP-WSI has provided strategic leadership for the WSI community, and has been successful in generating impact in: Strategy setting, Contributions to knowledge, and Strategic software development and support. The existing CCP-WSI network has identified priorities for WSI code development through industry focus group workshops; it has advanced understanding of the applicability and reliability of WSI through an internationally recognised Blind Test series; and supported collaborative code development. Acceleration of the offshore renewable energy sector and protection of coastal communities are strategic priorities for the UK and involve complex WSI challenges. Designers need computational tools that can deal with complex environmental load conditions and complex structures with confidence in their reliability and appropriate use. Computational tools are essential for design and assessment within these priority areas and there is a need for continued support of their development, appropriate utilisation and implementation to take advantage of recent advances in HPC architecture. Both the CFD and CSM communities have similar challenges in needing computationally efficient code development suitable for simulations of design cases of greater and greater complexity and scale. Many different codes are available commercially and are developed in academia, but there remains considerable uncertainty in the reliability of their use in different applications and of independent qualitative measures of the quality of a simulation. One of the novelties of this CCP is that in addition to considering the interface between fluids and structures from a computational perspective, we propose to bring together the two UK expert communities who are leading developments in those respective fields. The motivation is to develop FCWSI software, which couples the best in class CFD tools with the most recent innovations in computational solid mechanics. Due to the complexity of both fields, this would not be achievable without interdisciplinary collaboration and co-design of FCWSI software. The CCP-WSI+ will bring the CFD and CSM communities together through a series of networking events and industry workshops designed to share good practice and exchange advances across disciplines and to develop the roadmap for the next generation of FCWSI tools. Training and workshops will support the co-creation of code coupling methodologies and libraries to support the range of CFD codes used in an open source environment for community use and to aid parallel implementation. The CCP-WSI+ will carry out a software audit on WSI codes and the data repository and website will be extended and enhanced with database visualisation and archiving to allow for contributions from the expanded community. Code developments will be supported through provision and management of the code repository, user support and training in software engineering and best practice for coupling and parallelisation. By bringing together two communities of researchers who are independently investigating new computational methods for fluids and structures, we believe we will be able to co-design the next generation of FCWSI tools with realism both in the flow physics and the structural response, and in this way, will unlock new complex applications in ocean and coastal engineering
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137b8f9910925f9cc53ce84dd6db0d31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::137b8f9910925f9cc53ce84dd6db0d31&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu