Confederation of Paper Industries
Confederation of Paper Industries
6 Projects, page 1 of 2
assignment_turned_in Project2019 - 2020Partners:University of Warwick, Econotherm (United Kingdom), NTU, Durham University, BRE Trust +17 partnersUniversity of Warwick,Econotherm (United Kingdom),NTU,Durham University,BRE Trust,University of Birmingham,University of Warwick,University of Birmingham,BRE Trust (Building Res Excellence),British Glass,Durham University,University of Strathclyde,University of Glasgow,University of Nottingham,Confederation of Paper Industries,Confederation of Paper Industries,University of Strathclyde,Federation of Environmental Trade Associations,Heat Pump Association,University of Glasgow,British Glass,Econotherm (United Kingdom)Funder: UK Research and Innovation Project Code: EP/P005667/2Funder Contribution: 33,590 GBPTackling climate change, providing energy security and delivering sustainable energy solutions are major challenges faced by civil society. The social, environmental and economic cost of these challenges means that it is vital that there is a research focus on improving the conversion and use of thermal energy. A great deal of research and development is continuing to take place to reduce energy consumption and deliver cost-effective solutions aimed at helping the UK achieve its target of reducing greenhouse gas emissions by 80 per cent by 2050. Improved thermal energy performance impacts on industry through reduced energy costs, reduced emissions, and enhanced energy security. Improving efficiency and reducing emissions is necessary to increase productivity, support growth in the economy and maintain a globally competitive manufacturing sector. In the UK, residential and commercial buildings are responsible for approximately 40% of the UK's total non-transport energy use, with space heating and hot water accounting for almost 80% of residential and 60% of commercial energy use. Thermal energy demand has continued to increase over the past 40 years, even though home thermal energy efficiency has been improving. Improved thermal energy conversion and utilisation results in reduced emissions, reduced costs for industrial and domestic consumers and supports a more stable energy security position. In the UK, thermal energy (heating and cooling) is the largest use of energy in our society and cooling demand set to increase as a result of climate change. The need to address the thermal energy challenge at a multi-disciplinary level is essential and consequently this newly established network will support the technical, social, economic and environmental challenges, and the potential solutions. It is crucial to take account of the current and future economic, social, environmental and legislative barriers and incentives associated with thermal energy. The Thermal Energy Challenge Network will support synergistic approaches which offer opportunities for improved sustainable use of thermal energy which has previously been largely neglected. This approach can result in substantial energy demand reductions but collaboration and networking is essential if this is to be achieved. A combination of technological solutions working in a multi-disciplinary manner with engineers, physical scientists, and social scientists is essential and this will be encouraged and supported by the Thermal Energy Challenge Network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57e59cb22c5db22d94b488cf94d13a0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::57e59cb22c5db22d94b488cf94d13a0a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2019Partners:University of Birmingham, University of Nottingham, British Glass, Econotherm (United Kingdom), NTU +21 partnersUniversity of Birmingham,University of Nottingham,British Glass,Econotherm (United Kingdom),NTU,University of Glasgow,Confederation of Paper Industries,Heat Pump Association,University of Glasgow,Federation of Environmental Trade Associations,Econotherm (United Kingdom),BRE Trust,University of Strathclyde,Newcastle University,University of Strathclyde,Durham University,BRE Trust (Building Res Excellence),British Glass,Durham University,British Glass,Building Research Establishment,University of Warwick,Newcastle University,Confederation of Paper Industries,University of Birmingham,University of WarwickFunder: UK Research and Innovation Project Code: EP/P005667/1Funder Contribution: 303,988 GBPTackling climate change, providing energy security and delivering sustainable energy solutions are major challenges faced by civil society. The social, environmental and economic cost of these challenges means that it is vital that there is a research focus on improving the conversion and use of thermal energy. A great deal of research and development is continuing to take place to reduce energy consumption and deliver cost-effective solutions aimed at helping the UK achieve its target of reducing greenhouse gas emissions by 80 per cent by 2050. Improved thermal energy performance impacts on industry through reduced energy costs, reduced emissions, and enhanced energy security. Improving efficiency and reducing emissions is necessary to increase productivity, support growth in the economy and maintain a globally competitive manufacturing sector. In the UK, residential and commercial buildings are responsible for approximately 40% of the UK's total non-transport energy use, with space heating and hot water accounting for almost 80% of residential and 60% of commercial energy use. Thermal energy demand has continued to increase over the past 40 years, even though home thermal energy efficiency has been improving. Improved thermal energy conversion and utilisation results in reduced emissions, reduced costs for industrial and domestic consumers and supports a more stable energy security position. In the UK, thermal energy (heating and cooling) is the largest use of energy in our society and cooling demand set to increase as a result of climate change. The need to address the thermal energy challenge at a multi-disciplinary level is essential and consequently this newly established network will support the technical, social, economic and environmental challenges, and the potential solutions. It is crucial to take account of the current and future economic, social, environmental and legislative barriers and incentives associated with thermal energy. The Thermal Energy Challenge Network will support synergistic approaches which offer opportunities for improved sustainable use of thermal energy which has previously been largely neglected. This approach can result in substantial energy demand reductions but collaboration and networking is essential if this is to be achieved. A combination of technological solutions working in a multi-disciplinary manner with engineers, physical scientists, and social scientists is essential and this will be encouraged and supported by the Thermal Energy Challenge Network.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2b8aa5954c4e1b4e7026e7b8cce69af7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2b8aa5954c4e1b4e7026e7b8cce69af7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2025Partners:The Institute of Materials, Confederation of Paper Industries, North East Process Industry ClusterNEPIC, Nanyang Technological University, NTU +72 partnersThe Institute of Materials,Confederation of Paper Industries,North East Process Industry ClusterNEPIC,Nanyang Technological University,NTU,The Climate Change Committe,NAREC National Renewable Energy Centre,Star Refrigeration Ltd,Agility Eco Services Ltd,Mineral Products Association,Royal Academy of Engineering,POWER ROLL LIMITED,Association for Decentralised Energy,The Institute of Materials,Sintef Energi As,Power Roll (United Kingdom),Department for Business, Energy and Industrial Strategy,North East Process Industry ClusterNEPIC,Visvesvaraya Technological University,European Energy Research Alliance,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas,Mineral Products Association,National Institute of Technology,SINTEF AS,Durham County Council,Energy Networks Association,Durham University,Nestlé (United Kingdom),AGFW,GE (General Electric Company) UK,NMAM Institute of Technology,Euroheat & Power,Power Roll,Narec Distributed Energy,University of Sheffield,Heat Pump Association,Ciemat,Tata Steel (United Kingdom),NMAM Institute of Technology,Kensa Engineering Ltd,Tata Steel Europe,Euroheat & Power,GT Energy UK Ltd,North East of England Process Industry Cluster (United Kingdom),University of Sheffield,National Institute of Technology Karnataka,E.ON Energy Solutions Ltd,Dept for Sci, Innovation & Tech (DSIT),European Energy Research Alliance (EERA),SJTU,Leuphana University of Lüneburg,AGFW (Energy Efficiency Association),Leuphana University,NESTLE UK LTD,GT Energy,Energy Networks Association,Federation of Environmental Trade Associations,Agility Eco Services Ltd,Energy Systems Catapult,Tata Steel (UK),The Committee on Climate Change,Royal Academy of Engineering,Kensa Group Ltd,Star Refrigeration Ltd,Dept for Business, Innovation and Skills,Chartered Institute of Building,Confederation of Paper Industries,CIH,Association for Decentralised Energy,General Electric (United Kingdom),Association for Decentralised Energy,Durham County Council,Leuphana University,GE (General Electric Company) UK,Durham University,E.ON Energy Solutions Ltd,Energy Systems CatapultFunder: UK Research and Innovation Project Code: EP/T022906/1Funder Contribution: 1,159,700 GBPDecarbonising both heating and cooling across residential, business and industry sectors is fundamental to delivering the recently announced net-zero greenhouse gas emissions targets. Such a monumental change to this sector can only be delivered through the collective advancement of science, engineering and technology combined with prudent planning, demand management and effective policy. The aim of the proposed H+C Zero Network will be to facilitate this through funded workshops, conferences and secondments which in combination will enable researchers, technology developers, managers, policymakers and funders to come together to share their progress, new knowledge and experiences. It will also directly impact on this through a series of research funding calls which will offer seed funding to address key technical, economic, social, environmental and policy challenges. The proposed Network will focus on the following five themes which are essential for decarbonising heating and cooling effectively: Theme 1 Primary engineering technologies and systems for decarbonisation Theme 2 Underpinning technologies, materials, control, retrofit and infrastructure Theme 3 Future energy systems and economics Theme 4 Social impact and end users' perspectives Theme 5 Policy Support and leadership for the transition to net-zero
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b28e532a31af5e3277fa8d6a32499ef0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::b28e532a31af5e3277fa8d6a32499ef0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:James Cropper Plc, EDGE Digital Manufacturing Limited, Northumbria University, Ferroday Ltd, CFMS Services Ltd +97 partnersJames Cropper Plc,EDGE Digital Manufacturing Limited,Northumbria University,Ferroday Ltd,CFMS Services Ltd,Aluminium Federation Ltd,British Glass,Henry Royce Institute,Liberty Speciality Steels,CFMS Services Ltd,Materials Processing Institute (MPI),Materials Processing Institute (MPI),PYROPTIK INSTRUMENTS LIMITED,British Coatings Federation,Union Papertech Ltd,Building Research Establishment,Tata Steel (United Kingdom),Hartree Centre,FeTu Ltd,University of Liverpool,British Ceramic Confederation,British Glass,North East of England Process Industry Cluster (United Kingdom),[no title available],Goodwin Steel Castings,Mineral Products Association,Celsa Steel UK,Croda (United Kingdom),Policy Connect,SHU,Industry Wales,LKAB Minerals Ltd,CRODA EUROPE LIMITED,British Steel Ltd,James Cropper Plc,Imerys (Switzerland),University of Liverpool,AkzoNobel (United Kingdom),North West Business Leadership Team,Science and Technology Facilities Council,BRE,Policy Connect,British Coatings Federation,Hartree Centre,N8 Research Partnership,Sheffield Forgemasters Engineering Ltd,Imerys,FeTu Ltd,Liberty Steel UK,Digital Catapult,Glass Futures Ltd,University of Sheffield,University of Sheffield,CERAM Research,Aluminium Federation Ltd,N8 Research Partnership,Henry Royce Institute,Confederation of Paper Industries,UK Steel,Johnson Matthey Plc,CRODA EUROPE LTD,Celsa Steel UK,Johnson Matthey,British Glass,EDGE Digital Manufacturing Limited,Johnson Matthey (United Kingdom),British Steel (United Kingdom),Sheffield Hallam University,Sheffield Forgemasters Engineering Ltd,IOM3,Knowledge Centre for Materials Chemistry,PYROPTIK INSTRUMENTS LIMITED,Confederation of Paper Industries,Industry Wales,Vesuvius (United Kingdom),Breedon Cement Ltd,UK Steel,Mineral Products Association,AkzoNobel UK,Union Papertech Ltd,Tata Steel UK,Ferroday (United Kingdom),Knowledge Centre for Materials Chemistry,AkzoNobel UK,LKAB Minerals Ltd,Lucideon (United Kingdom),British Ceramic Confederation,North West Business Leadership Team,Connected Digital Economy Catapult,North East Process Industry ClusterNEPIC,Building Research Establishment Ltd BRE,University of Warwick,Centre for Modelling & Simulation,Breedon Cement Ltd,University of Warwick,Institute of Materials, Minerals and Mining,Northumbria University,Glass Futures Ltd,Goodwin Steel Castings,Tata Steel,North East Process Industry ClusterNEPIC,VESUVIUS UK LTDFunder: UK Research and Innovation Project Code: EP/V026402/1Funder Contribution: 2,259,080 GBPThe UK Foundation Industries (Glass, Metals, Cement, Ceramics, Bulk Chemicals and Paper), are worth £52B to the UK economy, produce 28 million tonnes of materials per year and account for 10% of the UK total CO2 emissions. These industries face major challenges in meeting the UK Government's legal commitment for 2050 to reduce net greenhouse gas emissions by 100% relative to 1990, as they are characterised by highly intensive use of both resources and energy. While all sectors are implementing steps to increase recycling and reuse of materials, they are at varying stages of creating road maps to zero carbon. These roadmaps depend on the switching of the national grid to low carbon energy supply based on green electricity and sustainable sources of hydrogen and biofuels along with carbon capture and storage solutions. Achievement of net zero carbon will also require innovations in product and process design and the adoption of circular economy and industrial symbiosis approaches via new business models, enabled as necessary by changes in national and global policies. Additionally, the Governments £4.7B National Productivity Investment Fund recognises the need for raising UK productivity across all industrial sectors to match best international standards. High levels of productivity coupled with low carbon strategies will contribute to creating a transformation of the foundation industry landscape, encouraging strategic retention of the industries in the UK, resilience against global supply chain shocks such as Covid-19 and providing quality jobs and a clean environment. The strategic importance of these industries to UK productivity and environmental targets has been acknowledged by the provision of £66M from the Industrial Strategy Challenge Fund to support a Transforming Foundation Industries cluster. Recognising that the individual sectors will face many common problems and opportunities, the TFI cluster will serve to encourage and facilitate a cross sectoral approach to the major challenges faced. As part of this funding an Academic Network Plus will be formed, to ensure the establishment of a vibrant community of academics and industry that can organise and collaborate to build disciplinary and interdisciplinary solutions to the major challenges. The Network Plus will serve as a basis to ensure that the ongoing £66M TFI programme is rolled out, underpinned by a portfolio of the best available UK interdisciplinary science, and informed by cross sectoral industry participation. Our network, initially drawn from eight UK universities, and over 30 industrial organisations will support the UK foundation industries by engaging with academia, industry, policy makers and non-governmental organisations to identify and address challenges and opportunities to co-develop and adopt transformative technologies, business models and working practices. Our expertise covers all six foundation industries, with relevant knowledge of materials, engineering, bulk chemicals, manufacturing, physical sciences, informatics, economics, circular economy and the arts & humanities. Through our programme of mini-projects, workshops, knowledge transfer, outreach and dissemination, the Network will test concepts and guide the development of innovative outcomes to help transform UK foundation industries. The Network will be inclusive across disciplines, embracing best practice in Knowledge Exchange from the Arts and Humanities, and inclusive of the whole UK academic and industrial communities, enabling access for all to the activity programme and project fund opportunities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a79c36454edd6c17345714ceaf0aae3c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a79c36454edd6c17345714ceaf0aae3c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2021 - 2024Partners:Mineral Products Association, Netzsch Instruments, Saica Paper UK Ltd, Celsa Steel UK, Encirc (United Kingdom) +128 partnersMineral Products Association,Netzsch Instruments,Saica Paper UK Ltd,Celsa Steel UK,Encirc (United Kingdom),Innovate UK,Morgan Advanced Materials,IS-Instruments Ltd,Liberty House Group (UK),Morgan Advanced Materials plc (UK),Vesuvius (United Kingdom),Breedon Cement Ltd,Capital Refractories Limited,Industry Wales,Society of Glass Technology,EnergyNest AS,CERAM Research,Guardian Industries (International),IOM3,Norton Aluminium Ltd,Beatson Clark Limited,Morgan Advanced Materials (United Kingdom),Confederation of Paper Industries,Catal International Ltd,NWL,North East of England Process Industry Cluster (United Kingdom),British Glass,Chemical Industries Association Ltd,URM (UK) Limited,Kimberly-Clark Limited (UK),Capital Refractories Limited,Liberty House Group (UK),Ansys UK Ltd,KNOWLEDGE TRANSFER NETWORK LIMITED,[no title available],Sheffield Refractories Ltd,Mineral Products Association,NSG Holding (Europe) Limited,Beatson Clark Limited,Jayplas (J&A Young (Leicester) Ltd),British Glass,IS Instruments (United Kingdom),Texon (UK),EnergyNest (Norway),Knowledge Transfer Network,Power Minerals Ltd,International Synergies Ltd,CLT Carbon Limiting Technologies,Celsa Steel UK,Guardian Industries (United States),ANSYS,Fives Stein Limited,CRODA EUROPE LIMITED,Cast Metals Federation,LafargeHolcim,VESUVIUS UK LTD,CLT Carbon Limiting Technologies,Cast Metals Federation (United Kingdom),AMETEK (UK),F.I.C (UK) Limited,Hanson Heidelberg Cement Group,NETZSCH (UK),Emerson Advanced Design Center,Hanson Heidelberg Cement Group,Alpek Polyester UK Ltd,Glass Futures Ltd,Zentia (Ceiling Solutions Limited) (UK),LafargeHolcim (France),Almath Crucibles Ltd,Siemens plc (UK),Zentia (Ceiling Solutions Limited) (UK),Aluminium Federation Ltd,International Synergies Ltd,Heraeus (United Kingdom),Breedon Cement Ltd,Kimberly-Clark Limited (UK),Power Minerals Ltd,SIEMENS PLC,British Ceramic Confederation,Trent Refractories Ltd,Society of Glass Technology,CRODA EUROPE LTD,Glass Technology Services Ltd GTS,NSG Group (UK),Luxfer MEL Technologies,AkzoNobel UK,Norton Aluminium Ltd,Fives Stein Limited,Cranfield University,Aluminium Federation Ltd,Saint Gobain Glass Industry,Greenology (Teeside) Limited,Confederation of Paper Industries,Jayplas (J&A Young (Leicester) Ltd),Materials Processing Institute (MPI),Imerys (United Kingdom),Constellium UK Ltd,Croda (United Kingdom),Northumbrian Water Group plc,Magnet Applications Ltd,North East Process Industry ClusterNEPIC,Diageo plc,Emerson Advanced Design Center,CRANFIELD UNIVERSITY,F.I.C (UK) Limited,Sheffield Refractories Ltd,Lucideon (United Kingdom),British Ceramic Confederation,AkzoNobel (United Kingdom),Glass Technology Services,Greenology (Teeside) Limited,Heraeus Electro-Nite,Alpek Polyester UK Ltd,Chemical Industries Association Ltd,Constellium (United Kingdom),North East Process Industry ClusterNEPIC,AMETEK UK,Almath Crucibles Ltd,Encirc Ltd,Glass Futures Ltd,Institute of Materials, Minerals and Mining,Industry Wales,Texon (UK),Diageo (United Kingdom),AkzoNobel UK,Imerys,Catal International Ltd,Saica Paper UK Ltd,British Glass,Materials Processing Institute (MPI),Bunting Magnetics Europe (UK),Saint Gobain Glass Industry,URM (UK) LimitedFunder: UK Research and Innovation Project Code: EP/V054627/1Funder Contribution: 4,836,820 GBPThe Transforming the Foundation Industries Challenge has set out the background of the six foundation industries; cement, ceramics, chemicals, glass, metals and paper, which produce 28 Mt pa (75% of all materials in our economy) with a value of £52Bn but also create 10% of UK CO2 emissions. These materials industries are the root of all supply chains providing fundamental products into the industrial sector, often in vertically-integrated fashion. They have a number of common factors: they are water, resource and energy-intensive, often needing high temperature processing; they share processes such as grinding, heating and cooling; they produce high-volume, often pernicious waste streams, including heat; and they have low profit margins, making them vulnerable to energy cost changes and to foreign competition. Our Vision is to build a proactive, multidisciplinary research and practice driven Research and Innovation Hub that optimises the flows of all resources within and between the FIs. The Hub will work with communities where the industries are located to assist the UK in achieving its Net Zero 2050 targets, and transform these industries into modern manufactories which are non-polluting, resource efficient and attractive places to be employed. TransFIRe is a consortium of 20 investigators from 12 institutions, 49 companies and 14 NGO and government organisations related to the sectors, with expertise across the FIs as well as energy mapping, life cycle and sustainability, industrial symbiosis, computer science, AI and digital manufacturing, management, social science and technology transfer. TransFIRe will initially focus on three major challenges: 1 Transferring best practice - applying "Gentani": Across the FIs there are many processes that are similar, e.g. comminution, granulation, drying, cooling, heat exchange, materials transportation and handling. Using the philosophy Gentani (minimum resource needed to carry out a process) this research would benchmark and identify best practices considering resource efficiencies (energy, water etc.) and environmental impacts (dust, emissions etc.) across sectors and share information horizontally. 2 Where there's muck there's brass - creating new materials and process opportunities. Key to the transformation of our Foundation Industries will be development of smart, new materials and processes that enable cheaper, lower-energy and lower-carbon products. Through supporting a combination of fundamental research and focused technology development, the Hub will directly address these needs. For example, all sectors have material waste streams that could be used as raw materials for other sectors in the industrial landscape with little or no further processing. There is great potential to add more value by "upcycling" waste by further processes to develop new materials and alternative by-products from innovative processing technologies with less environmental impact. This requires novel industrial symbioses and relationships, sustainable and circular business models and governance arrangements. 3 Working with communities - co-development of new business and social enterprises. Large volumes of warm air and water are produced across the sectors, providing opportunities for low grade energy capture. Collaboratively with communities around FIs, we will identify the potential for co-located initiatives (district heating, market gardening etc.). This research will highlight issues of equality, diversity and inclusiveness, investigating the potential from societal, environmental, technical, business and governance perspectives. Added value to the project comes from the £3.5 M in-kind support of materials and equipment and use of manufacturing sites for real-life testing as well as a number of linked and aligned PhDs/EngDs from HEIs and partners This in-kind support will offer even greater return on investment and strongly embed the findings and operationalise them within the sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::312753aaf93758c5aa6b112c8a46d38a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::312753aaf93758c5aa6b112c8a46d38a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right