AIRBUS UK
AIRBUS UK
11 Projects, page 1 of 3
assignment_turned_in Project2012 - 2017Partners:Agilent Technologies (United States), Agilent Technologies, IBM, University of Cambridge, Smiths Detection (United Kingdom) +34 partnersAgilent Technologies (United States),Agilent Technologies,IBM,University of Cambridge,Smiths Detection (United Kingdom),RU,Rutgers University,AOS Technology Ltd,BNCBIO NANO CONSULTING,Cambridge Integrated Knowledge Centre,Bio Nano Consulting Ltd,III-V Lab,Airbus (Netherlands),T R L Technology Ltd,TERAVIEW LIMITED,Teraview Ltd,THE BIO NANO CENTRE LIMITED,Airbus (United Kingdom),Innovate UK,Home Office Science,Smiths Group plc,Airbus (United Kingdom),UCL,RMRL,III-V Lab,TeraView Limited,University of Kassel,Aerospace and Defence KTN,Home Office Science,Smiths-Detection,Nat. Inst. of Info & Communication Tech,Roke Manor Research Ltd,Nat. Inst. of Info & Communication Tech,IBM Almaden Research Center,UNIVERSITY OF CAMBRIDGE,National Inst of Info & Comm Tech (NICT),AIRBUS UK,UKRI,Rutgers State University of New JerseyFunder: UK Research and Innovation Project Code: EP/J017671/1Funder Contribution: 6,568,980 GBPThe terahertz (THz) frequency region within the electromagnetic spectrum, covers a frequency range of about one hundred times that currently occupied by all radio, television, cellular radio, Wi-Fi, radar and other users and has proven and potential applications ranging from molecular spectroscopy through to communications, high resolution imaging (e.g. in the medical and pharmaceutical sectors) and security screening. Yet, the underpinning technology for the generation and detection of radiation in this spectral range remains severely limited, being based principally on Ti:sapphire (femtosecond) pulsed laser and photoconductive detector technology, the THz equivalent of the spark transmitter and coherer receiver for radio signals. The THz frequency range therefore does not benefit from the coherent techniques routinely used at microwave/optical frequencies. Our programme grant will address this. We have recently demonstrated optical communications technology-based techniques for the generation of high spectral purity continuous wave THz signals at UCL, together with state-of-the-art THz quantum cascade laser (QCL) technology at Cambridge/Leeds. We will bring together these internationally-leading researchers to create coherent systems across the entire THz spectrum. These will be exploited both for fundamental science (e.g. the study of nanostructured and mesoscopic electron systems) and for applications including short-range high-data-rate wireless communications, information processing, materials detection and high resolution imaging in three dimensions.
more_vert assignment_turned_in Project2013 - 2016Partners:AIRBUS UK, Airbus (United Kingdom), Airbus (United Kingdom), Imperial College London, Airbus (Netherlands)AIRBUS UK,Airbus (United Kingdom),Airbus (United Kingdom),Imperial College London,Airbus (Netherlands)Funder: UK Research and Innovation Project Code: EP/J011126/1Funder Contribution: 336,962 GBPThis project aims at developing new methods of analysis of the stability of fluid flows and flow control. Flow control is among the most promising routes for reducing drag, thus reducing carbon emissions, which is the strongest challenge for aviation today. However, the stability analysis of fluid flows poses significant mathematical and computational challenges. The project is based on a recent major breakthrough in mathematics related to positive-definiteness of polynomials. Positive-definiteness is important in stability and control theory because it is an essential property of a Lyapunov function, which is a powerful tool for establishing stability of a given system. For more than a century since their introduction in 1892 constructing Lyapunov functions was dependent on ingenuity and creativity of the researcher. In 2000 a systematic and numerically tractable way of constructing polynomials that are sums of squares and that satisfy a set of linear constraints was discovered. If a polynomial is a sum of squares of other polynomials then it is positive-definite. Thus, systematic, computer-aided construction of Lyapunov functions became possible for systems described by equations with polynomial non-linearity. In the last decade the Sum-of-Squares approach became widely used with significant impact in several research areas. The Navier-Stokes equations governing motion of incompressible fluid have a polynomial nonlinearity. This project will achieve its goals by applying sum-of-squares approach to stability and control of the fluid flows governed by these equations. This will require development of new advanced analytical techniques combined with extensive numerical calculations. The project has a fundamental nature, with main expected outcomes being applicable to a large variety of fluid flows. The rotating Taylor-Couette flow will be the first object to which the developed methods will be applied. Taylor-Couette flow, encountered in a wide range of industrial application, for a variety of reasons has an iconic status in the stability theory, traditionally serving as a test-bench for new methods. In order to maximise the impact of the research, the project collaborators will conduct targeted dissemination activities for industry and academia in the form of informal and formal workshops, in addition to traditional dissemination routes of journal papers and conferences. Selected representatives from industry will be invited to attend the workshops. Wider audience will be reached via a specially created and continuously maintained web page.
more_vert assignment_turned_in Project2011 - 2015Partners:Imperial College London, QinetiQ Ltd, AIRBUS UK, Defence Science & Tech Lab DSTL, Bae Systems Defence Ltd +9 partnersImperial College London,QinetiQ Ltd,AIRBUS UK,Defence Science & Tech Lab DSTL,Bae Systems Defence Ltd,DSTL Portsdown West,BAE Systems (Sweden),BAE Systems,BAE Systems (United Kingdom),QinetiQ Ltd,Airbus (United Kingdom),Airbus (Netherlands),Airbus (United Kingdom),QinetiQFunder: UK Research and Innovation Project Code: EP/I014683/1Funder Contribution: 401,227 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
more_vert assignment_turned_in Project2007 - 2011Partners:Jaguar Cars, Asylum Research UK Ltd, Edwards, MSU, Unimatic Engineers Ltd +140 partnersJaguar Cars,Asylum Research UK Ltd,Edwards,MSU,Unimatic Engineers Ltd,Cognition Europe,The Technology Partnership Plc (TTP),Comsol Ltd,Ministry of Defence (MOD),BP Exploration Operating Company Ltd,COMSOL Ltd,Thales,Instem Computer Systems,Thales Aerospace,Oxford Instruments Group (UK),Bernard Matthews,LG Mouchel and Partners,Holroyd Machine Tools Gears &,Accuromm UK Ltd,Unilever (United Kingdom),Ministry of Defence,Bombardier Aerospace,LCP CONSULTING LTD,BAE Sytems Electronics Ltd,Rolls-Royce (United Kingdom),Thales,Rolls-Royce Plc (UK),AIRBUS UK,Marden Edwards Ltd,Unipath Ltd,Galorath Affiliates Ltd,Rolls-Royce (United Kingdom),GE Fanuc Europe SA - UK Branch,East of England Development Agency,Unimatic Engineers Ltd,GE (General Electric Company) UK,Bovis Lend Lease,Northern Powergrid (United Kingdom),BAE Systems (United Kingdom),Amersham PLC,Atkins UK,ASYLUM RESEARCH UK LTD,[no title available],Autoliv Ltd,Halliburton KBR,Epigem Ltd,Unipath Ltd,GKN Aerospace Services Ltd,Doncasters Plc,Ministry of Defence MOD,LONDON UNDERGROUND LIMITED,Bae Systems Defence Ltd,CYTEC ENGINEERED MATERIALS LIMITED,Ove Arup & Partners Ltd,Cranfield University,Shell Research UK,AWE,National Blood Service,Castrol UK Ltd,Unilever Corporate Research,BP International,Delcam International plc,Cytec Engineered Materials,Bernard Matthews (United Kingdom),AIRBUS OPERATIONS LIMITED,UNILEVER U.K. CENTRAL RESOURCES LIMITED,Galorath Affiliates Ltd,VBC Group,Control 2K Ltd,Shell Research UK,NPL,National Physical Laboratory,De Montfort University,National Blood Service,LG Mouchel and Partners,DSTL,Battenfeld U K Ltd,VBC Group,Contour Fine Tooling Ltd,Atkins UK,Lockheed Martin UK,Epigem Ltd (Middlesbrough),Saint-Gobain Abrasives,Saint-Gobain Abrasives,Instem Computer Systems,Alere Limited (UK),Renold Precision Technologies,BAE Systems (Sweden),Lend Lease,GE Aviation,Lotus Engineering Ltd,Airbus,Air Liquide (France),Airbus (Netherlands),Arup Group Ltd,NHS Blood and Transplant NHSBT,BP British Petroleum,ArvinMeritor Automotive Light Vehicle,Alcoa Europe Flat Rolled Products,Autoliv Ltd,Michigan State University,Amersham plc,LCP Consulting Limited,Lockheed Martin,Delcam (United Kingdom),Edwards,Castrol UK Ltd,Scott Bader,MG Rover Group Ltd,East of England Development Agency,CRANFIELD UNIVERSITY,CONTOUR FINE TOOLING LIMITED,BAE Systems,DMU,Lotus Cars Ltd,Air Liquide (France),Bombardier Aerospace,TATA Motors Engineering Technical Centre,Technology Partnership Plc (The),Doncasters Plc,GE Fanuc Europe SA - UK Branch,AWE Aldermaston,Defence Science & Tech Lab DSTL,ArvinMeritor Automotive Light Vehicle,MG Rover Group Limited,ROLLS-ROYCE PLC,JAGUAR LAND ROVER LIMITED,BOC Edwards,Cognition Europe,Rolls-Royce Fuel Cell Systems Ltd,Tecan Components Ltd,Control 2K Ltd,Renold Precision Technologies,Scott Bader Company Ltd,Battenfeld U K Ltd,Airbus (United Kingdom),Delcam International plc,Tecan Components Ltd,Epigem Ltd,Airbus (United Kingdom),Accuromm UK Ltd,Halliburton KBR,Holroyd Machine Tools Gears &,GKN Aerospace,Alcoa Europe Flat Rolled ProductsFunder: UK Research and Innovation Project Code: EP/E001874/1Funder Contribution: 9,770,800 GBPThe Cranfield IMRC vision is to grow the existing world class research activity through the development and interaction between:Manufacturing Technologies and Product/Service Systems that move UK manufacturing up the value chain to provide high added value manufacturing business opportunities.This research vision builds on the existing strengths and expertise at Cranfield and is complementary to the activities at other IMRCs. It represents a unique combination of manufacturing research skills and resource that will address key aspects of the UK's future manufacturing needs. The research is multi-disciplinary and cross-sectoral and is designed to promote knowledge transfer between sectors. To realise this vision the Cranfield IMRC has two interdependent strategic aims which will be pursued simultaneously:1.To produce world/beating process and product technologies in the areas of precision engineering and materials processing.2.To enable the creation and exploitation of these technologies within the context of service/based competitive strategies.
more_vert assignment_turned_in Project2011 - 2016Partners:Airbus (United Kingdom), Caparo Vehicle Technologies Ltd, Luxfer Gas Cylinders Ltd, Luxfer Gas Cylinders Ltd, Bentley Systems (United States) +18 partnersAirbus (United Kingdom),Caparo Vehicle Technologies Ltd,Luxfer Gas Cylinders Ltd,Luxfer Gas Cylinders Ltd,Bentley Systems (United States),Rolls-Royce (United Kingdom),Vestas (Denmark),GKN Aerospace,Vestas Blades (Tecnology) UK Ltd,Bentley Motors Ltd,Caparo Vehicle Technologies Ltd,MAN Truck & Bus UK Ltd,Bentley Systems (United Kingdom),Rolls-Royce Plc (UK),AIRBUS UK,University of Nottingham,Airbus (Netherlands),NTU,Lotus Cars Ltd,GKN Aerospace Services Ltd,Airbus (United Kingdom),Lotus Engineering Ltd,Rolls-Royce (United Kingdom)Funder: UK Research and Innovation Project Code: EP/I033513/1Funder Contribution: 5,866,580 GBPThe EPSRC Innovative Manufacturing Centre in Composites will conduct a programme of fundamental manufacturing research comprising two research themes aimed at developing efficient, high rate, low cost and sustainable manufacturing processes coupled to effective and validated design and process modelling tools. These processes will aim to deliver high yield, high performance and high quality components and structures. The themes are as follows:Theme 1: Composites Processing ScienceThe focus for this theme is to develop integrated modelling systems for predicting and minimising process induced defects and defining and optimising process capability. Topics include: Multi-scale process modelling framework for candidate processes (fibre deposition, resin infusion, consolidation and cure); Stochastic simulation of process and resulting material/structure variability, leading to prediction of process induced defects at the macro, meso and micro scales; Analysis of design/ manufacturing/ cost interactions, enabling process capability mapping, design and process optimisationTheme 2: Composites Processing TechnologyThe focus for this theme will be experimental investigation of next-generation, high rate processing technologies as essential elements within a flexible composites manufacturing cell with multi-process capability. Topics include: Development of rapid deposition technologies: automated robotic control for tow/tape placement, development of flexible/ hybrid systems, application to dry fibre and thermoplastic composites manufacture; High speed preforming processes: fibre placement, Discontinuous Carbon Fibre Preforming (DCFP), multiaxial and 3D textiles and their automated integration into multi-architecture, multi-functional composites; High rate & controlled thermal processing: rapid heating/curing and innovative tooling; Process and parts integration with novel joining technologies, tolerance reduction and on-line inspection In addition to the main research themes, the platform element within the Centre will support four generic research projects operating across the Centre to develop common technologies and underpin the main research priorities. These technology areas are: Multi-scale modelling; Cost modelling; Automation/robotics; and, Design and manufacturing quality integration.
more_vert
chevron_left - 1
- 2
- 3
chevron_right
