Powered by OpenAIRE graph

Memorial University of Newfoundland

Memorial University of Newfoundland

20 Projects, page 1 of 4
  • Funder: UK Research and Innovation Project Code: AH/K006029/1
    Funder Contribution: 914,212 GBP

    Northern sea ice levels are at an historical and millennial low, and nowhere are the effects of contemporary climate change more pronounced and destructive than in the Arctic. The Western Arctic rim of North America is considered the climate change "miners canary", with temperatures increasing at twice the global average. In the Yukon-Kuskokwim Delta (Y-K Delta), Western Alaska, the indigenous Yup'ik Eskimos are facing life-altering decisions in an uncertain future, as rising temperatures, melting permafrost and coastal erosion threaten traditional subsistence lifeways, livelihoods and settlements - the Yup'ik face becoming "the world's first climate change refugees" (The Guardian 2008). For the Yup'ik, however - whose relationship to the total environment is central to their worldview - coping with global climate change entails far more than adapting to new physical and ecological conditions. This is reflected in the holistic incorporation of both natural and social phenomena embodied in the use of the Yup'ik word ella, (variably translating as "weather", "world", "universe", "awareness"), which is understood in intensely social as well as physical terms. Ella reflects the relationship Yup'ik society has with the natural world. As changing environmental conditions jeopardise traditional subsistence practices in the Arctic, their deep-rooted dependency and social connection to the land is also threatened - further severing their ecological ties and compromising their cultural adaptive capacity that has defined Yup'ik community and identity for thousands of years. Rapid climatic change is by no means a uniquely modern phenomenon and the indigenous cultures of this region have faced such life-changing situations before. In fact, Western Alaska has experienced pronounced climatic variations within the last millennia, with the forebears of the Yup'ik being similarly challenged by regime shifts that would have influenced the availability of important subsistence resources, much the same as their descendants face today. The ELLA project will use both the products and processes of archaeological research to understand how Yup'ik Eskimos adapted to rapid climate change in the late prehistoric past (AD 1350-1700), and to inform and empower descendant Yup'ik communities struggling with contemporary global warming today. Taking full advantage of the spectacular but critically endangered archaeological resource now emerging from melting permafrost along the Bering Sea coast, this community-based project will illuminate the adaptive capacity of the precontact Yup'ik; build sustainable frameworks for the documenting of local sites under threat; and reinforce Yup'ik cultural resilience by providing new contexts for encountering and documenting their past.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X01519X/1
    Funder Contribution: 1,010,570 GBP

    Almost all active caldera volcanoes host hydrothermal systems that circulate a mixture of seawater, meteoric water and magmatic fluids through the subsurface geology to seeps or vents on the seafloor. These fluids can explosively interact with magma in volcanic eruptions and can change the physical properties of their host rocks, influencing both the likelihood of eruptions occurring and their explosivity. The nature of these interactions is poorly understood, including how fluid flow changes during periods of magmatic intrusion, how the hydrothermal system connects magmatic fluids to the surface and the spatial distribution and extent of alteration/mineralisation. While we know hydrothermal fluid flow plays an important role in modulating eruption dynamics, as long as these fundamental knowledge gaps exist it is impossible to forecast, with any degree of accuracy, what this effect will be which makes understanding hazards and impacts in eruption scenarios difficult. In this proposal we will combine novel controlled source electromagnetic mapping of porosity and permeability, with passive seismic mapping of hydrothermal fluid flow in the shallow subsurface, constrained by heat flow measurements and surface and subsurface sampling to characterise the porosity and permeability of the Santorini hydrothermal system. Santorini has been selected as the ideal natural laboratory to test these relationships because it is exceptionally well characterised geophysically and geologically, has a diversity of hydrothermal vents and has experienced recent activity which can be used to test modelling. We will quantify how magmatic fluids are partitioned between vents to identify the primary pathways for magmatic volatile escape, and quantify the impact hydrothermal mineralisation has had on the physical strength of the seafloor. Once we have a full picture of the system in its current state we will use mapping, fluid inclusions, mineralogy and the sedimentary record to establish how vent locations, subsurface fluid pathways, and fluid fluxes, temperatures and chemistries responded to the 2011/12 period of unrest. These data will be used to constrain the boundary conditions for a hydrothermal system model, which can be used to predict how the system will respond to future periods of intrusion both at Santorini and at other caldera systems around the world. This project will provide a step change in our understanding of hydrothermal interactions with volcanoes and our ability to predict their response to changes in the magmatic system. This has implications not just for understanding volcanic eruptions, but also for understanding metal and volatile fluxes from the mantle to the ocean and atmosphere, the development of economic metal deposits in these systems, the impact on ecological communities of intrusive and extrusive volcanic events, geothermal energy production, and for hazard forecasting and mitigation. The project will push the frontiers of knowledge by combining cutting edge geophysical and geochemical techniques to produce a model of a caldera hydrothermal system at a resolution previously not possible, and by developing modelling tools that would allow the application of these findings to other systems. The project is ambitious but achievable and benefits from a large team of international expert proponents, partnerships with other large international projects and high-quality pre-existing data upon which to build.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V012843/1
    Funder Contribution: 1,294,850 GBP

    The surface ocean is home to billions of microscopic plant-like phytoplankton which produce organic matter in the surface ocean using sunlight and carbon dioxide. When they die, they sink and take this carbon into the deep ocean, where it is stored on timescales of hundreds to thousands of years. This storage helps to keep our climate the way it is today. This process of biological CO2 uptake and storage in the deep ocean is called the 'biological carbon pump' and, in order to understand how our climate will change in the near future, we need to understand what controls this process. Until fairly recently, the biological carbon pump was thought to work almost independently from the mixing processes that occur in the oceans, such as during storms, winter or by meandering ocean currents. However, recent work suggested that these physical processes may be very important for the biological carbon pump, providing a direct pathway for carbon to reach the deep ocean, and can contribute as much carbon to depth as the sinking of dead matter alone. Therefore, we urgently need to understand how the biological and physical processes interact to transport organic matter into the deep ocean. Two reasons explain this clear oversight: Physical and biological oceanographers often work independently, so that crossdisciplinary processes can get overlooked. In addition, the location where, and times when, these processes have the most dramatic effect on ocean carbon storage are hostile environments to work in, with very high waves and strong winds that make working from ships nearly impossible. ReBELS is an exciting programme that will bring together physical and biological oceanographers to closely work together on the biological carbon pump. To overcome the logistical challenges, ReBELS will take advantage of the recent developments in technology, using state-of-the-art marine autonomous robots that will be able to sample the ocean at times where we cannot do so with ships. Our study site will be the Labrador Sea in the Northwest Atlantic. There, organic carbon stays in the deep ocean much longer than anywhere else in the world (>1000 years). Moreover, the Labrador Sea has been identified as a very important location for the climate, as it is strongly affected by increasing temperatures and melting ice. Using autonomous technology, we will measure the biological carbon pump over the course of an entire year, and quantify carbon transport and carbon storage through the different biological and physical processes. To do so, we will measure the distribution of organic matter particles throughout the water column and determine whether they are sinking or being transported by ocean mixing. We will then extend our results to the entire Northwest Atlantic using proxies that can be determined on larger scales (for example from satellites). Finally, we will work with modellers to include these important processes when predicting climate in the future.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V010034/1
    Funder Contribution: 9,100 GBP

    NERC : Zoe Melvin : NE/L002604/1 Global wildlife is increasingly subject to human-induced disturbance, such as habitat loss and land-use changes. Some species are able to cope with these changes while others are not, leading to species declines and extinctions. One of the most important ways that animals cope with human disturbance is by using flexible coping strategies in new situations created by disturbance. Social grouping is one strategy that animals adapt according to the situation that they are in. The goal for any animal is to maximise the amount of food you eat while reducing your risk of death so that you can pass on your genes to the next generation. Group-living animals can reduce their risk of death by sharing the time spent looking for danger, but they also need to share food with other group members. Being flexible in the size of your group would allow you to maximise the benefits and minimise the costs of group-living given your situation. For example, animals could group together in areas with many predators to allow them to eat while sharing the time spent looking for danger and split apart in areas of low risk to reduce competition for food with other group members. Similarly, animals could group together more at times of the day or the year when their chances of encountering a predator is higher. As more and more habitat is lost or degraded, animals are forced to feed in areas that present a higher risk of encountering human predators, such a farmland. Being able to group together flexibly in risky habitats and split up in low-risk habitats may allow species to cope better with human induced-change. In this project, we aim to investigate the effect that grouping together has on where and when animals choose to feed. I will address this question using 18 female elk in one herd in Manitoba that lives in a mostly agricultural landscape. These elk wear Global Positioning System (GPS) collars that have been collecting data on their locations at regular intervals for two years. I will use a combination of tests to investigate what is driving elk to choose certain habitats and whether the distance between each animal and its closest neighbour changes in more in risky areas (i.e. agricultural land) and more risky times of day (i.e. hunting season and daytime when humans are more active). This research will give us a better understanding of how animals cope with habitat disturbance and the potential for social grouping to be used as a coping strategy. Elk populations in Manitoba are generally in decline which could have negative impacts on livelihoods of people that depend on the hunting industry. The information gained in this study will help local stakeholders to make decisions about land-use changes and hunting quotas in their area to promote the sustainable population growth of elk and support local livelihoods.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/P02582X/1
    Funder Contribution: 30,612 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.