Powered by OpenAIRE graph

Hitachi (Japan)

Hitachi (Japan)

12 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/V051814/1
    Funder Contribution: 1,072,240 GBP

    Many current challenges in Non-Destructive Evaluation (NDE) stem from the increased use of advanced materials and manufacturing processes that push the limits of materials' performance. NDE techniques are required that can cope with extreme environments (high temperature / radioactive environments), restricted access (inside engines or though access ports), and complex geometries. To address these challenges, this project will develop a new capability for real-time, remote ultrasonic imaging that can be used for NDE. This engineering challenge will be achieved by introducing a conceptual change to phased array ultrasonics, beyond the limits of geometrical, ultrasonic frequency and mode array characteristics, by adapting the array to the demands of the inspected structure, on-the-fly, and thus transforming the field. The long-term vision behind this project goes beyond inspection, to develop a method for monitoring and control of in-process parameters, in places of extreme environments such as fusion reactors or turbine engines. The industrial importance of the project is demonstrated by the significant cash and in-kind contributions of the project partners.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N013247/1
    Funder Contribution: 1,477,730 GBP

    The theme of this platform grant is electronic-photonic convergence. It underpins expertise in integrated photonics platforms such as silicon photonics, mid-IR photonics, non-linear photonics and high speed electronics, all of which make use of a common fabrication platform. The convergence of electronics and photonics underpins a host of technologies ranging from future internet to consumer products, and from biological and chemical sensing to communications. The integration of electronics and photonics is recognised as the only way to manage the massive data demands of the future, and is consequently crucial to the continuation of the digital age. Silicon Photonics is an example of an emerging technology that will bring photonics to mass markets via integration with electronics. Integrated silicon systems are projected to serve a market in excess of $700M by 2024 (Yole Development, 2014), but is reliant on photonics converging with electronics. Furthermore, some aspects of silicon photonics will encompass non-linear photonics in second generation devices for all optical processing in a fully integrated platform. Similarly, related technologies such as SiGe-on-Insulator and Ge-on-Insulator are poised to revolutionise the next generation of communications and integrated sensor technologies, all on an integrated platform with electronics and non-linear photonics. Underpinning a team in these crucial areas of expertise supported by a flexible funding platform will enable us to pioneer work in these technology areas, and to add value to ideas that emerge. The convergence of electronics and photonics will result in complex integrated systems, linked via fabrication technologies. Electronic-photonic integration has yet to be addressed in a meaningful way in silicon based technologies, and this team collectively have the essential skills to do so, at an institution that possesses the key fabrication equipment to facilitate success. Due to the complex nature of fabrication for research, existing RAs are fully utilised, and have little or no additional scope for strategic research. The platform grant will give us the opportunity to dedicate fabrication resource and RA skills to strategic projects, and specific innovation. We will do this by utilising the RAs within the project to deliver work of significant strategic importance to the portfolio of grants held by the group, whilst also developing the research and managerial skills of the RAs by giving them specific management responsibilities whilst being mentored by one of the investigators.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M022684/1
    Funder Contribution: 662,150 GBP

    Computer models have played a central role in assessing the behaviour of nuclear power facilities for decades, they have ensured nuclear operations remain safe to both the public and the environment. The aim of the project is to develop a new and highly advanced modelling capability that is accurate, robust and validated. A new multi-physics, predictive modelling framework will be formed for simulating neutron transport, fluid flows and structural interaction problems. It aims to combine novel and world leading technologies in numerical methods and high performance computing to form a simulation tool for geometrically complex, nuclear engineering problems. This will surpass current computational capabilities, by providing modelling accuracy through the use of efficient adaptive resolution, and will tackle grand challenge problems such as full core reactor modelling. This model will be developed within a predictive framework that combines modelling with uncertainty and experimental data. This is a vital component as inherent uncertainties in data, geometry, parameterisations and measurement will place uncertainties in the modelled predictions. By integrating these uncertainties within the calculations we can quantify the uncertainty they place on the final result. The combination of all these technologies will result in the first modelling framework of its kind, offering unprecedented detail through optimised resolution with combined uncertainty quantification and data assimilation. It will provide substantially improved analysis of nuclear facilities, improve operational efficiency and, ultimately, help ensure its safety. The project will work closely with world leading academics and industry, both within the UK and overseas. This collaboration will result in the technologies being used to analyse future reactor designs, including those reactors due to be built in the UK over the coming years.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M022684/2
    Funder Contribution: 464,161 GBP

    Computer models have played a central role in assessing the behaviour of nuclear power facilities for decades, they have ensured nuclear operations remain safe to both the public and the environment. The aim of the project is to develop a new and highly advanced modelling capability that is accurate, robust and validated. A new multi-physics, predictive modelling framework will be formed for simulating neutron transport, fluid flows and structural interaction problems. It aims to combine novel and world leading technologies in numerical methods and high performance computing to form a simulation tool for geometrically complex, nuclear engineering problems. This will surpass current computational capabilities, by providing modelling accuracy through the use of efficient adaptive resolution, and will tackle grand challenge problems such as full core reactor modelling. This model will be developed within a predictive framework that combines modelling with uncertainty and experimental data. This is a vital component as inherent uncertainties in data, geometry, parameterisations and measurement will place uncertainties in the modelled predictions. By integrating these uncertainties within the calculations we can quantify the uncertainty they place on the final result. The combination of all these technologies will result in the first modelling framework of its kind, offering unprecedented detail through optimised resolution with combined uncertainty quantification and data assimilation. It will provide substantially improved analysis of nuclear facilities, improve operational efficiency and, ultimately, help ensure its safety. The project will work closely with world leading academics and industry, both within the UK and overseas. This collaboration will result in the technologies being used to analyse future reactor designs, including those reactors due to be built in the UK over the coming years.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P027393/1
    Funder Contribution: 1,036,420 GBP

    Continuous carbon fibre composites are capable of competing directly with advanced metals in terms of structural performance. The advantages of composites come from the ability to manufacture complex shapes, generally in relatively low volume production, in weight saving and corrosion resistance. However, continuous fibre composites are difficulties to manufacture, leading to both high costs and to the potential for generation of a range of defects impacting strongly on performance. In addition, continuous fibre composites cannot be directly recycled as there is no way of reusing the fibres that can be extracted in long, but not continuous and topologically ordered form. From an examination of the current status of the composites industry two big challenges can be identified. The first is to increase defect-free production volumes by at least an order of magnitude - leading directly to the need to simplify and automate the manufacturing processes [12]. The second is the requirement to generate more sustainable composites solutions by moving towards a circular economy based model [13] via the development of recycling processes able to retain the material's mechanical properties and economic value. In principle, there is nothing new in this analysis of the challenges, however, a great deal of research activity has been expended in these areas in the last two decades without achieving a step-change in capability. The central thesis of this proposal is that the principal difficulties in both achieving low cost, reliable, high volume production and readily recyclable advanced composites arise from a single source: the fact that the fibres are continuous and that both problem areas can be directly tackled by adopting highly Aligned Discontinuous Fibre Reinforced Composites (ADFRCs). Our vision is to generate a fundamental step-change in the composite industry by further developing and applying the HiPerDiF (High Performance Discontinuous Fibre) technology to produce high performance ADFRCs. This new, high volume manufacturing method was invented at the University of Bristol in the EPSRC funded HiPerDuCT (High Performance Ductile Composite Technology) programme (EP/I02946X/1). The basic concept is that if discontinuous fibres are accurately aligned and their length is significantly longer than the critical fibre length, the tensile modulus, strength and failure strain of the obtained composites are comparable to those of continuous fibre composites. This technique, developed in the HiPerDuCT programme has also shown the potential to tailor mechanical behaviour of composite materials, delivering pseudo-ductility via hybridisation and fibre pull-out mechanisms. The HiPerDiF technology offers the opportunity to realise the potential of aligned discontinuous fibre composites and produce a significant industrial and societal impact. Changing the fibre reinforcement geometry from continuous to discontinuous, without compromising the mechanical properties, will have a wide impact on the composite industry. The fibre discontinuity will allow an increase in the productivity of automated manufacturing processes and the formability of complex geometries, reducing the manufacturing generated defects. The use of ADFRC will increase the tailorability of composite materials by leading to truly multifunctional composite materials, able to respond to multiple design requirements. ADFRC will open the way for the adoption of a circular economy model in the composite sector by allowing the remanufacturing of reclaimed carbon fibres in high performance and high value feedstock and by producing more readily recyclable materials.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.