Proton (United Kingdom)
Proton (United Kingdom)
13 Projects, page 1 of 3
assignment_turned_in Project2007 - 2010Partners:Lotus Engineering Ltd, Proton (United Kingdom), FORD MOTOR COMPANY LIMITED, Brunel University, Ford Motor Company (United Kingdom) +1 partnersLotus Engineering Ltd,Proton (United Kingdom),FORD MOTOR COMPANY LIMITED,Brunel University,Ford Motor Company (United Kingdom),Brunel University LondonFunder: UK Research and Innovation Project Code: EP/E005136/1Funder Contribution: 462,780 GBPThe hybrid vehicles are known to be capable of dramatically improving the fuel economy, particularly in cities and urban areas where the traffic conditions involve a lot of stops and starts. In such conditions, a large amount of fuel is needed to accelerate the vehicle, and much of this is converted to heat in brake friction during deceleration. Capturing, storing and reusing this braking energy to give additional power can therefore improve fuel efficiency, and this can be achieved by using the momentum of the vehicle during coasting and deceleration to top up an energy storage device and later releasing the energy to propel the vehicle during cruising and acceleration. The proposed work is to study some innovative air hybrid engine concepts and their potentials in improved fuel economy and low emissions through systematic modelling and engine testing. In the proposed air hybrid engine concepts, the engine itself is used as the compressor or expander, transmitting power through the pistons and the crankshaft of the engine thus braking or propelling the vehicle using the existing drivetrain of the vehicle. Pneumatic energy is stored at moderate pressure in a compact compressed air energy storage tank which may be integrated into the vehicle sub-frame. The air hybrid engine will be able to recover the braking energy and stored it for later use to start the engine and help the vehicle to accelerate, allowing significant improvement in fuel economy but without adding the large weight and complexity of the electric hybrid. This is a mild hybrid system in which the engine is used as an air motor for stop/start operation, with the engine switched off when the vehicle stops and restarted quickly with compressed air when the vehicle is launched, thus not using fuel during the idle period. In addition, the stored high pressure air is available readily on demand for other uses to improve driveability and reduce emissions, such as briefly boosting the engine to eliminate turbo-lag in a turbo-charged engine resulting in better response and removal of the black smoke typically seen from accelerating diesel vehicles on the road. The stored air may also be used as a source of secondary air for rapid light-off of the exhaust catalyst during cold start. All these are significant additional benefits uniquely available with the pneumatic hybrid, which are not possible with the other hybrid types. In the proposed research, three new air hybrid engine concepts will be studied using both advanced modelling and engine experiments. The results from the proposed research will be used for the development of a new frontier engines with leapfrog improvements in performance, fuel economy, and exhaust emissions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6bead2a82dc2a45602041a15d1d0fef3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::6bead2a82dc2a45602041a15d1d0fef3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2006 - 2010Partners:Shell Global Solutions UK, University of Cambridge, Shell (United Kingdom), University of Cambridge, Proton (United Kingdom) +3 partnersShell Global Solutions UK,University of Cambridge,Shell (United Kingdom),University of Cambridge,Proton (United Kingdom),Lotus Engineering Ltd,UNIVERSITY OF CAMBRIDGE,Shell Global Solutions UKFunder: UK Research and Innovation Project Code: EP/D068703/1Funder Contribution: 428,308 GBPThe main aim of the work is to gain a better insight into the operation of near-future advanced internal combustion engine strategies. Such understanding is vital for the development of high-efficiency, ultra-low-emissions engines to meet environmental regulations. For example, the European automotive manufacturers have committed to reduce fleet average CO2 emissions to 140g/km by 2008, with 120g/km projected by 2012. Hybridized SI-HCCI-SI engine technology is a potential solution towards achieving such targets in improving fuel consumption and developing near-zero emissions vehicles. Such hybridized operation could enable a reduction in UK CO2 levels of ~0.7million metric tons per annum (for a representative 2.0 l gasoline engine size). Furthermore, the benefits of 99% reduction (c.f. SI) in NOx emissions and virtually no soot emissions during HCCI mode of operation can be realised with this technology. In addition to experimental research, computational modelling has been utilized by the research community to gain insight into the transients associated with such a hybridized engine operation. However, the existing models are empirical in nature and rely on profiles from experiments. This may also be the reason for the absence of numerical analysis to investigate the effect of the complex and dynamic transient phenomena on the regulated emissions. The proposed research involves the development of an advanced, predictive phenomenological model to simulate the SI-HCCI-SI engine transients. The model will be validated against measurements and further improved with the help of some new experiments suggested in this proposal. The proposed work comprises of three parts: 1) Development of a novel computational model to account for spontaneous multi point ignition (HCCI-like) as well as premixed flame propagation (SI-like) during the transients. The model includes detailed chemical kinetics description and accounts for inhomogeneities in composition and temperature, thus proving beneficial in understanding the impact of the transient processes on CO, HC and NOx emissions. 2) Understanding transient-like operation by carrying out cost-effective experiments involving operating conditions representative of the complex transient phenomena. These measurements will also be used in validating the formulated model. 3) Model validation against experimental results obtained from fully variable valve timing (FVVT) capable SI-HCCI-SI transient engine operation. Overall, this congruent experimental and modelling approach involves sharing the know-how and expertise between academic research and industrial partners aimed at realising ultra-low emissions engine performance.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2ffbd95f396cf41e5d486c6b9a7e07e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::2ffbd95f396cf41e5d486c6b9a7e07e6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2011 - 2016Partners:Aston Martin Lagonda (United Kingdom), Bentley Motors Ltd, Brunel University, SAIC Motor (United Kingdom), Bentley Systems (United Kingdom) +8 partnersAston Martin Lagonda (United Kingdom),Bentley Motors Ltd,Brunel University,SAIC Motor (United Kingdom),Bentley Systems (United Kingdom),Lotus Engineering Ltd,Ricardo (United Kingdom),Ricardo (United Kingdom),Proton (United Kingdom),SAIC,Brunel University London,Volkswagen Group (United Kingdom),Aston Martin Lagonda (Gaydon)Funder: UK Research and Innovation Project Code: EP/I038616/1Funder Contribution: 4,221,480 GBPThe UK automotive industry is a large and critical sector within the UK economy. It accounts for 820,000 jobs, exports finished goods worth £8.9bn annually and adds value of £10bn to the UK economy each year. However, the UK automotive industry is currently facing great challenges, such as responsibility for a 19% and growing share of UK annual CO2 emissions, strong international competition, declining employment and hollowing-out of the domestic supply chain, and enormous pressure from regulatory bodies for decarbonisation. A solution to these challenges comes from the development and manufacture of low carbon vehicles (LCVs), as identified by the UK government. Vehicle lightweighting is the most effective way to improve fuel economy and to reduce CO2 emissions. This has been demonstrated by many vehicle mass reduction programmes worldwide. Historically vehicle mass reduction has been achieved incrementally by reducing the mass of specific vehicle parts piece-by-piece, with little consideration of the carbon footprint of input materials and closed-loop recycling of end of life vehicles (ELVs). Our vision is that the future low carbon vehicle is achieved by a combination of multi-material concepts with mass-optimised design approaches through the deployment of advanced low carbon input materials, efficient low carbon manufacturing processes and closed-loop recycling of ELVs. To achieve this vision, we have gathered the best UK academic brainpower for vehicle lightweighting and formed the TARF-LCV consortium, whose members include 8 research teams involving 18 academics from Brunel, Coventry, Exeter, Imperial, Manchester, Nottingham, Oxford Brookes and Strathclyde. TARF-LCV aims to deliver fundamental solutions to the key challenges faced by future development of LCVs in the strategic areas of advanced materials, enabling manufacturing technologies, holistic vehicle design and closed-loop recycling of ELVs. We have developed a coherent research programme organised in 6 work packages. We will develop closed-loop recyclable aluminium (Al) and magnesium (Mg) alloys, metal matrix composites (MMCs) and recyclable polymer matrix composites (PMCs) for body structure and powertrain applications; we will develop advanced low carbon manufacturing technologies for casting, forming and effective vehicle assembly and disassembly; and we will develop mass-optimised design principles and specific life cycle analysis (LCA) methodology for future LCV development. To deliver the 4-year TARF-LCV programme, in addition to the EPSRC funding requested, we have leveraged financial support for 2 post-doctoral research fellows from the EPSRC Centre-LiME at Brunel University and LATEST2 at Manchester University, and for 9 PhD studentships from partner universities. Consequently, the TARF-LCV research team will include 18 academics, 11 post-doctoral research fellows and 18 research students. This not only ensures a successful delivery of the TARF-LCV research programme, but also provides a training ground for the future leaders of low carbon vehicle development in the UK.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f0d32d070edcaef5f454b9687ea913fe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f0d32d070edcaef5f454b9687ea913fe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2013 - 2017Partners:ESB, Hoganas AB, Semikron Ltd, Semikron (United Kingdom), QUB +8 partnersESB,Hoganas AB,Semikron Ltd,Semikron (United Kingdom),QUB,Scorpion Power System Ltd,Scorpion Power System Ltd,Northern Ireland Assembly,Lotus Engineering Ltd,Höganäs (Sweden),DECC,Proton (United Kingdom),Northern Ireland Electricity NetworksFunder: UK Research and Innovation Project Code: EP/L001063/1Funder Contribution: 855,110 GBPThe UK government is determined to address the challenges of tackling climate change and maintaining energy security in a way that minimises costs and maximises benefits to the economy. Among all sources of CO2 emissions in the UK, the energy supply accounts for about 40%, followed by the transport for over 25%. To meet the target of cutting greenhouse gas emissions by 80% by 2050, large proportion of electricity generated from low carbon sources integrated with mass adoption of electric vehicles (EV) offer a great potential. Likewise, the Chinese 12th National Economic and Social Development Five-Year Plan has set the target of 3.5% reduction per unit of GDP in both energy use and carbon dioxide emissions, and identified new energy and clean energy vehicles among the seven priority industries in the next five years from 2012. It is clear that both countries are fully committed to a planned 'decarbonisation' of their respective energy systems. However, both face the challenges of planning and building the suitable infrastructure, and of managing the resources to ensure future power systems operate more reliably, more flexibly, and more economically, by integrating and coordinating the actions of all actors. It has been widely recognized that electric vehicles could both benefit from and help to drive forward the development of smart grids where renewable resources are widely and substantially employed. However, a number of technical challenges are still open for further exploitation. The proposed collaborative interdisciplinary research will investigate and develop an intelligent grid interfaced vehicle eco-charging (iGIVE) system for more reliable, more flexible and efficient, and more environmental friendly smart gird solutions for seamless integration of distributed low-carbon intermittent power generation and large number of EVs. To achieve this, a multilayer hierarchical power and information flow framework for monitoring and optimal control of the EV charging while minimising the volume of information passed to the utility control centers will be investigated first. Within this framework, a variable rate bi-directional high performance EV battery charging unit based on a patented technology will be developed, and battery management and optimal EV charging and discharging dispatching strategies will be investigated. Other issues associated to the charging stations, such as electromagnetic interference and harmonics generation and their impact on environment and electricity grid will also be studied. Finally, simulation platform will be built to investigate the interactions of EV-related different participants and their impact on the grid operations. A test bed to verify the design will be developed and a joint UK-China joint laboratory on smart grid and EV integration will be established, bringing together key academic and industry partners in smart grid and EV from UK and China. Both system operators and EV industry in the UK, China and other parts of the world will benefit considerably from the development of intelligent EV eco-charging systems when a large number of EVs are adopted by the public and greater amounts of renewable power are utilized, as they provide an adaptive and intelligent framework and EV charging systems to economically, efficiently and environment-friendly accommodate charging requirements as well as providing ancillary service to the grid integrated with larger amounts of intermittent renewable energy sources and thereby enable the decarbonisation of the electricity supply industry and the transport sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::537014ddcc40fc5aeebb26a94d697dcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::537014ddcc40fc5aeebb26a94d697dcc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2010 - 2011Partners:Lotus Engineering Ltd, KPIT Infosystems Ltd., Tata Motors (United Kingdom), FORD MOTOR COMPANY LIMITED, CRANFIELD UNIVERSITY +9 partnersLotus Engineering Ltd,KPIT Infosystems Ltd.,Tata Motors (United Kingdom),FORD MOTOR COMPANY LIMITED,CRANFIELD UNIVERSITY,Cranfield University,AVL Powertrain UK Ltd,KPIT Infosystems Ltd.,Proton (United Kingdom),Ford Motor Company (United Kingdom),Jaguar Land Rover (United Kingdom),JAGUAR LAND ROVER,Anstalt für Verbrennungskraftmaschinen List,[no title available]Funder: UK Research and Innovation Project Code: EP/H050337/1Funder Contribution: 204,729 GBPIn recent years, a lot of research has been carried out in the field of energy management for full HEVs and EVs. Strategies that are based on heuristics can be easily implemented in a real vehicle by using a rule-based strategy or by using fuzzy logic. To find the global optimal solution, control techniques such as linear programming, quadratic programming, optimal control, especially dynamic programming have been studied. A different approach has been proposed in some recent work. In this approach instead of considering one particular driving cycle for calculating an optimal control law, a set of driving cycles is considered, resulting in a stochastic optimization approach. After considering the optimisation based methods described above, the following observation is made. The principal common drawback of all the aforementioned strategies is consideration of drivability as an afterthought. The drivability is considered in an ad hoc fashion as these approaches are not dynamic model based. At best, techniques such as game-theoretic optimisation utilises quasi-static models which are not sufficient to address drivability requirements. Another important drawback of these strategies is robustness. Theses strategies do not include a feedback control block, so the robust performance of the strategy is not guaranteed as the vehicle parameters deviated from their nominal conditions. Ad hoc adaptation of these strategies for drivability does impact their optimality and therefore a negative impact on the emissions and fuel consumption. The robust multivariable control has extensively been used in the aerospace industry, process control and chemical and petrochemical plants. However, the application of the multivariable control in the automotive industry is scarce and when it comes to the energy management development, there is no application. There exists multivariable based method such as Model Predictive Controls, however, these techniques are mainly time domain based, which has its drawbacks and they have the limitations such as on-line implementation is not possible. The multivariable control design has been used by this author for integration of active chassis systems (Active Roll Control and Active Limited Slip Differential). There is a tremendous opportunity for reducing fuel consumption, emissions, and calibration effort to production utilising this methodology. The user fuel economy data obtained from Toyota Prius has shown that there is approximately 10-15% difference between the average real world and driving cycle fuel economy. This difference is mainly due to the drivability impact. Our conservative projection of fuel savings and CO2 reduction of this proposal is 5-7%. An approximate annual savings of 400 Million, due to reduction in calibration effort, based on a volume projection of 50,000 hybrid vehicles after the end of this project. Furthermore, additional possible benefits and savings are foreseeable due to transferability between platform variants. The aim of this work is to design and develop a multivariable feedback controller to replace the ad hoc design currently used to address robustness and vehicle drivability issues as stated above. The robust feedback multivariable is derived based on the dynamic models of the plant so the drivability requirements are addressed as a part of the design and development of the controller and it is not an afterthought. Furthermore, the lack of robustness is not an issue with the Multivariable controls as they are inherently derived from feedback policies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e3cdf4e3d8687cea92b7cf504b743983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::e3cdf4e3d8687cea92b7cf504b743983&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
chevron_right