Powered by OpenAIRE graph

THE RIVERS TRUST

THE RIVERS TRUST

8 Projects, page 1 of 2
  • Funder: UK Research and Innovation Project Code: NE/V01627X/1
    Funder Contribution: 994,280 GBP

    Land-use and agriculture are responsible for around one quarter of all human greenhouse gas (GHG) emissions. While some of the activities that contribute to these emissions, such as deforestation, are readily observable, others are not. It is now recognised that freshwater ecosystems are active components of the global carbon cycle; rivers and lakes process the organic matter and nutrients they receive from their catchments, emit carbon dioxide (CO2) and methane to the atmosphere, sequester CO2 through aquatic primary production, and bury carbon in their sediments. Human activities such as nutrient and organic matter pollution from agriculture and urban wastewater, modification of drainage networks, and the widespread creation of new water bodies, from farm ponds to hydro-electric and water supply reservoirs, have greatly modified natural aquatic biogeochemical processes. In some inland waters, this has led to large GHG emissions to the atmosphere. However these emissions are highly variable in time and space, occur via a range of pathways, and are consequently exceptionally hard to measure on the temporal and spatial scales required. Advances in technology, including high-frequency monitoring systems, autonomous boat-mounted sensors and novel, low-cost automated systems that can be operated remotely across multiple locations, now offer the potential to capture these important but poorly understood emissions. In the GHG-Aqua project we will establish an integrated, UK-wide system for measuring aquatic GHG emissions, combining a core of highly instrumented 'Sentinel' sites with a distributed, community-run network of low-cost sensor systems deployed across UK inland waters to measure emissions from rivers, lakes, ponds, canals and reservoirs across gradients of human disturbance. A mobile instrument suite will enable detailed campaign-based assessment of vertical and spatial variations in fluxes and underlying processes. This globally unique and highly integrated measurement system will transform our capability to quantify aquatic GHG emissions from inland waters. With the support of a large community of researchers it will help to make the UK a world-leader in the field, and will facilitate future national and international scientific research to understand the role of natural and constructed waterbodies as active zones of carbon cycling, and sources and sinks for GHGs. We will work with government to include these fluxes in the UK's national emissions inventory; with the water industry to support their operational climate change mitigation targets; and with charities, agencies and others engaged in protecting and restoring freshwater environments to ensure that the climate change mitigation benefits of their activities can be captured, reported and sustained through effectively targeted investment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Y035178/1
    Funder Contribution: 8,526,250 GBP

    The EPSRC Centre for Doctoral Training in Water Infrastructure & Resilience II (WIRe II) builds upon the highly successful collaboration between three of the UK's centres of excellence in water research (Cranfield, Sheffield and Newcastle Universities). One of the foundations of a thriving civic community and economy is having secure, resilient and sustainable water resources and services that: (i) provide affordable and equitable access to water; (ii) deliver a safe drinking water supply; (iii) provide wastewater services that don't pollute the environment; (iv) ensure there is enough water to meet the increasing demands from multiple sectors; and (v) are net beneficial to the environment, while protecting critical infrastructure from the impacts of climate change. This is placed against a backdrop of increased levels of dissatisfaction and higher expectations from civic communities on their water services, multiple demands on water resources and adaptations required from the impacts of climate change. With the UK population expected to grow from 69 million to 79 million by 2050, water resources have never been under as much pressure. Recent assessments have shown that only 14% of English rivers have good ecological status and no river has good chemical status. Water companies have also been placed under significant public examination from recent well-publicised pollution incidents from storm overflows and restrictions in water, with expectations that the UK will need to save 4billion litres of water per day by 2050. A collaborative and interdisciplinary approach is therefore essential for securing more resilient and sustainable water systems. There is also an urgent demand for improved water management as we move into a more sustainable world - the requirement for suitably skilled specialists with the appropriate interdisciplinary skills has never been higher. In developing the case for WIRe II, we have brought together an important group of civic partners, including the water utilities (with representation from all nations of the UK, covering water and wastewater services for 90% of the UKs population), organisations from the energy sector working on net zero technologies that have significant water demand and/or wastewater streams, regulators and civic groups, consultancies who work across the water-energy nexus, and partnerships with UKCRIC and DAFNI for access to world leading facilities. The CDT will be a significant contributor to addressing a clear skills gap identified by our partners and provide a future blueprint for enhanced training in the sector. We urgently need research to understand whole water systems (catchment, treatment and distribution processes) to achieve stable, safe water delivery to customers and the return of water back to the environment for multiple beneficial purposes. Such complexity requires inter- and trans-disciplinary research and a critical mass of experts and outputs. Three interconnected research themes will be addressed in WIRe II that align with key civic priorities: Safe and sustainable water resources for all; A resource neutral water sector; and Adapting to climate change. The WIRe II training programme has been developed with our partners to ensure we develop talent with the skills, competencies, and creativeness required to meet the changing demands of the sector. Built around the principles of deep vertical and horizontal integration of cohorts, students will progress through the CDT by undertaking a common induction semester, an assessed taught programme, an inspiring transferable skills curriculum and an annual Summer Challenge, alongside opportunities for national and international placements. We have evolved the programme to deliver the transformative science needed to tackle the rapidly changing demands and challenges being faced across our water systems and to develop the future leaders in the water and allied sectors.

    more_vert
  • Funder: UK Research and Innovation Project Code: 10069782
    Funder Contribution: 152,971 GBP

    GOVAQUA identifies, assesses, develops and validates innovative governance instruments and approaches to support and accelerate a transition towards sustainable and equitable water use in Europe. Such a transition is urgently required to reconcile water uses and environmental needs and to reach the aims of the EU WFD, the Green Deal and the UN SDGs. By adopting an inter- and transdisciplinary methodology that combines case studies with living labs, the highly skilled GOVAQUA team will systematically analyse and compare existing water governance systems across Europe, focusing on water use and its impacts in agriculture, industries, energy production, water utilities and the role of citizens. GOVAQUA conceptualises for the first time sustainability transition in water governance, and creates associated criteria and indicators for its assessment. In order to respond to systemic development needs for the transition, the project covers niche governance innovations in 1) legislation and regulation, 2) multi-stakeholder participation and collaboration, 3) economics and finance, and 4) digital solutions for information sharing. Good practices related to them are systematically reviewed, analysed and compared, and further co-developed, assessed and validated with key stakeholders in real-world action situations of six living labs in river basins, sub-basins or catchments in France, Finland, Spain, the UK and Romania, and transnationally between Finland and Sweden. GOVAQUA delivers new knowledge, participatory tools and good practice guidelines laying out pathways towards sustainable and equitable water future. The project results will be disseminated in a strategic and targeted manner to EU and Member State policy makers and officials, European river basin management community, water and water using sectors, NGOs and water governance expert organisations, and communicated to empower citizens in the consortium partner countries and beyond.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P001947/1
    Funder Contribution: 397,353 GBP

    By the middle of this century, two thirds of the world's population will be urban - equivalent to around 6.3 billion people. Mismanagement of these urban areas will adversely affect the health and well-being (i.e. how people experience their lives and flourish) of the population, and lead to social and environmental injustice. It has long been recognised that good quality cultural, social, built and natural environments within cities provide benefits in terms of health, well-being and equity of urban residents. Conversely, poor quality environments negatively affect the health and well-being of citizens and have negative economic consequences. With increasing urbanisation and changes in climate, the built, cultural, social and natural environments within cities will come under further pressure. While the relationships between selected environment quality parameters, such as noise and air pollution and health, have been well characterised, relatively little is known about the relationship between other quality measures, or endpoints, of economic and societal well-being and health. A major reason for this limited understanding is that while much data on city environments exist, this is fragmented across numerous data owners, is not joined up or at suitable granularity. As these existing datasets have been collected for other reasons, they are not always in a form where they are useful for a wide variety of purposes or for future needs. Data on some important parameters simply does not yet exist. Additionally, specialists in the different disciplines needed to tackle these complex issues often work in isolation. By bringing data together, breaking down barriers across research disciplines and exploiting and developing new monitoring, modelling and analytical technologies (e.g. wireless sensing networks, wearable devices, drones, crowdsourcing, 3D models of cities and virtual reality), it should be possible to provide a holistic analysis of the quality of the environment with a city that can be used by many different stakeholders (e.g. researchers, policy makers, planners, businesses and the public) to address their needs. This holistic analysis will then provide us with a better understanding of how to manage city environments and will provide long-term benefits to citizens and the economy. The York City Environment Observatory (YCEO) initiative will address this major knowledge gap by providing a framework, tools and conceptual models at the urban scale that can be rolled-out to assist with governance of environments in York and other cities in the UK and around the world. In this diagnostic phase project, experts from a diverse range of sectors and disciplines, will work together in a holistic way to design and lay the groundwork for establishing the YCEO. The consortium will work with a range of stakeholders and look to the past, present and future in trying to diagnose and predict environmental issues for York and their associated human health and well-being and economic impacts. We will build on York's strong track record in open data and combine data and models in order to do this. This diagnostic project will allow us to develop a prototype design for the YCEO, to be implemented within the next five years and a roadmap for achieving this. The YCEO will be designed to provide the evidence-base for making decisions on how best to manage and enhance the social, cultural, built and natural environment across city systems now and into the future, and in this way, improve the health, well-being and equity of citizens and the economy of the city. The YCEO will also aid local, national and international stakeholders (including planners, businesses, residents and community groups) to come up with low cost and innovative solutions to a range of problems identified as part of this diagnostic phase of the Urban Living Partnership.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/X018830/1
    Funder Contribution: 1,036,310 GBP

    Planetary boundaries of river water pollution are at risk of being breached, with dangerous consequences for human and environmental health, economic prosperity, and water security. The current paradigm for environmental management is predicated on understanding of average conditions. However, we know environmental pollution can vary markedly in space and time. This interdisciplinary Large Grant (co-created with non-academic partners and as NERC-NSF collaboration) will pioneer innovations in experimental analytics, data science and mathematical modelling to yield new mechanistic understandings of the dynamic drivers of multi-contaminant pollution hotspots (spaces) and hot moments (times) in a changing water world. The diagnosis of the impact of these locations and periods when average pollution conditions are far exceeded on large scale and long-term river basin water quality is critical to inform local and global adaptation and mitigation strategies for river pollution and develop interventions to keep within a safe(r) 'operating space' and improve water quality for people and the environment. SMARTWATER will therefore integrate environmental sensing, network and data science innovations, and mathematical modelling with stakeholders' catchment knowledge to transform the way we diagnose, understand, predict, and manage water pollution hotspots and hot moments. We will: 1. Pioneer the application of scalable field diagnostic technologies for water quality sensing and sampling for identifying and characterising multi-pollution hotspots and hot moments for emerging (e.g., wastewater indicators, pharmaceuticals, pesticides) and legacy (e.g., nutrients) contaminants. 2. Develop smart water quality monitoring network solutions at river basin scale based on integrating high-resolution networks of proxy water pollution indicators with multivariate UAV boat-based longitudinal river network sampling to understand the footprint, propagation and persistence of pollution hotspots and hot moments in river basins. 3. Develop and apply data science innovations integrating deep machine learning and artificial intelligence approaches for pollution source attribution and to identify how hotspots and hot moments of multi-pollutions dynamics results from pollution source activation, connectivity and river network transport and transformation. 4. Demonstrate the utility of the new generation of smart pollution data to improve the capacity of integrated river basin scale water quality models to adequately present and predict the emergence of pollution hotspots and hot moments including their large-scale footprint and longer-term relevance for catchment water pollution. 5. Co-create with our stakeholder community pathways for successfully implementing practical and policy relevant changes in water quality management practice and use the interdisciplinary and inter-sectoral expertise of our broad stakeholder base to inform knowledge generation and dissemination pipelines in SMARTWATER. The mechanistic process understanding and integrated technological and management solutions that will be developed in SMARTWATER will allow a step change in the diagnostics, prediction and management of water pollution and transform our ability to understand and tackle pollution pressures of increasing complexity in a rapidly changing environment.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.