Diageo (United Kingdom)
Diageo (United Kingdom)
6 Projects, page 1 of 2
assignment_turned_in Project2016 - 2019Partners:University of Edinburgh, Diageo plc, Diageo (United Kingdom)University of Edinburgh,Diageo plc,Diageo (United Kingdom)Funder: UK Research and Innovation Project Code: BB/N002520/1Funder Contribution: 327,152 GBPThere is increasing concern over environmental copper levels, their toxicity and their adverse effects on humans and wildlife. The environmental quality standard of copper in groundwater in the UK is set low, at 1-28 ug/l, to balance these risks against the interests of industry. Consequently, the currently allowed environmental level of copper effectively pitches the key Scottish industry of salmon fishing against another - the spirits industry, as whisky, vodka and gin production involve a universal step of distillation in copper pot stills. Soluble copper is required in the distilling process as it prevents sulphur-containing compounds from distilling with the alcohol, which would give it an aroma of bad eggs, so a simple change to the material from which the stills are made is not an option. This dissolved copper is then found in the waste, and not the whisky, in concentrations high enough to be toxic to living organisms. Therefore, it is necessary to treat the waste before it can be used as animal feed, fertiliser or released into the environment. The whisky industry has invested heavily in research to develop an effective method for removing toxic material from the waste of the whisky making process. Current treatments include chemical and physical methods that are expensive and have significant limitations. Cheap and effective treatment methods for copper contaminated waste still need to be developed and employing bacteria for the recycling of such contaminants may provide the solution, allowing the whisky industry to continue its expansion without adverse environmental consequences. The biological transformation of copper ions to stable copper nanoparticles may provide a cost-effective biological solution for the treatment of distillery coproducts. This biotransformation of metal ions occurs naturally within some bacteria with the formation of solid metal nanoparticles outside of the bacterial cell. Our previous work has shown that distillery coproducts are an excellent nutrient source for our chosen bacterium and that the copper ions in distillery coproducts can be biotransformed to nanoparticles at the same time. This application requests funding to improve the efficiency of this process to allow its future use on a industrial scale.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9b5ebfa509fa0d3caa745ab48d3b5e7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::9b5ebfa509fa0d3caa745ab48d3b5e7f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2023Partners:Unilever R&D, University of Edinburgh, Diageo plc, Unilever (United Kingdom), Ingenza Ltd +1 partnersUnilever R&D,University of Edinburgh,Diageo plc,Unilever (United Kingdom),Ingenza Ltd,Diageo (United Kingdom)Funder: UK Research and Innovation Project Code: BB/V003453/1Funder Contribution: 253,035 GBPBio-based processes will make a major contribution to solving the challenges faced by a global society in the 21st century, including those associated with environmental sustainability. The employment of biocatalysts in industrial processes is expected to boost the sustainable production of chemicals, materials and fuels from renewable resources. We are collaborating with Unilever, Ingenza and Diageo to ensure the translation of academic research into a novel biological platform for the sustainable production of scientifically improved enzymes, bio-based chemicals and other biomaterials by exploiting new technologies. This disruptive innovation will lead to the development of unique and sustainable new products, derived from wastes and by-products, and demonstration of their cost-efficient and energy-saving production using novel biomanufacturing technologies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::122a671f0f0fb012a79ffec6727ca700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::122a671f0f0fb012a79ffec6727ca700&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2021Partners:Howden Group Technology, University of Edinburgh, INEOS Technologies UK, Air Products (United Kingdom), Ineos (United Kingdom) +12 partnersHowden Group Technology,University of Edinburgh,INEOS Technologies UK,Air Products (United Kingdom),Ineos (United Kingdom),SCOTTISH ENVIRONMENT PROTECTION AGENCY,Air Products & Chemicals Plc,Air Products (United Kingdom),INEOS TECHNOLOGIES LTD,Diageo plc,Tees Valley Unlimited,SEPA,Howden (United Kingdom),Tees Valley Unlimited,Lotte Chemical UK Ltd,Diageo (United Kingdom),Lotte Chemical UK LtdFunder: UK Research and Innovation Project Code: EP/N024613/1Funder Contribution: 860,547 GBPThe 2008 Climate Change Act sets a legally binding target of 80% CO2 emissions reductions by 2050. This target will require nearly complete decarbonisation of large and medium scale emitters. While the power sector has the option of shifting to low carbon systems (renewables and nuclear), for industrial emissions, which will account for 45% of global emissions, the solution has to be based on developing more efficient processes and a viable carbon capture and storage (CCS) infrastructure. The government recognises also that "there are some industrial processes which, by virtue of the chemical reactions required for production, will continue to emit CO2", ie CCS is the only option to tackle these emissions. In order for the UK industry to maintain its competitiveness and meet these stringent requirements new processes are needed which reduce the cost of carbon capture, typically more than 60% of the overall cost of CCS. Research challenge - The key challenges in carbon capture from industry lie in the wide range of conditions (temperature, pressure, composition) and scale of the processes encountered in industrial applications. For carbon capture from industrial sources the drivers and mechanisms to achieve emissions reductions will be very different from those of the power generation industry. It is important to consider that for example the food and drinks industry is striving to reduce the carbon footprint of the products we purchase due to pressures from consumers. The practical challenge and the real long term opportunity for R&D are solutions for medium to small scale sources. In developing this project we have collaborated with several industrial colleagues to identify a broad range case studies to be investigated. As an example of low CO2 concentration systems we have identified a medium sized industry: Lotte Chemicals in Redcar, manufacturer of PET products primarily for the packaging of food and drinks. The plant has gas fired generators that produce 3500 kg/hr of CO2 each at approximately 7%. The emissions from the generators are equivalent to 1/50th of a 500 MW gas fired power plant. The challenge is to intensify the efficiency of the carbon capture units by reducing cycle times and increasing the working capacity of the adsorbents. To tackle this challenge we will develop novel amine supporting porous carbons housed in a rotary wheel adsorber. To maximise the volume available for the adsorbent we will consider direct electrical heating, thus eliminating the need for heat transfer surfaces and introducing added flexibility in case steam is not available on site. As an example of high CO2 concentrations we will collaborate with Air Products. The CO2 capture process will be designed around the steam methane reformer used to generate hydrogen. The tail gas from this system contains 45% v/v CO2. The base case will be for a generator housed in a shipping container. By developing a corresponding carbon capture module this can lead to a system that can produce clean H2 from natural gas or shale gas, providing a flexible low carbon source of H2 or fuel for industrial applications. Rapid cycle adsorption based processes will be developed to drive down costs by arriving flexible systems with small footprints for a range of applications and that can lead to mass-production of modular units. We will carry out an ambitious programme of work that will address both materials and process development for carbon capture from industrial sources.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02d56dd2fd160f8ee6569f712d60d0b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::02d56dd2fd160f8ee6569f712d60d0b3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2024 - 2033Partners:Mondelez UK R and D Ltd, Manufacturing Technology Centre (United Kingdom), GlaxoSmithKline (GSK), ASTRAZENECA UK LIMITED, BASF (Germany) +29 partnersMondelez UK R and D Ltd,Manufacturing Technology Centre (United Kingdom),GlaxoSmithKline (GSK),ASTRAZENECA UK LIMITED,BASF (Germany),Unilever UK Central Resources Limited,Lucideon (United Kingdom),Croda Europe Ltd,CAL Gavin Ltd,Novartis Pharma AG,Devro PLC,JAGUAR LAND ROVER LIMITED,Procter & Gamble Limited (P&G UK),Walgreen Alliance Boots (UK),Jacobs Douwe Egberts UK Production Ltd,Dupont Teijin Films (UK) Limited,Lonza (United Kingdom),AquaPak Polymers Ltd,Fonterra,Centre for Process Innovation CPI (UK),University of Birmingham,BOC Linde,Innospec Environmental Ltd,StreamSensing Ltd,Johnson Matthey,Pepsico International Ltd,Origen Power Ltd,Colgate-Palmolive (United States),Samworth Brothers Ltd,Rolls-Royce Plc (UK),Diageo (United Kingdom),Bristol Myers Squibb (UK),Imerys (United Kingdom),Nestlé (United Kingdom)Funder: UK Research and Innovation Project Code: EP/Y03466X/1Funder Contribution: 6,261,280 GBPThis user-need CDT will equip graduates with the skills needed by the UK formulation industry to manufacture the next generation of formulated products at net zero, addressing the decarbonisation needs for the sector and aligning with this EPSRC priority. Formulated products, including foods, battery electrodes, pharmaceuticals, paints, catalysts, structured ceramics, thin films and coatings, cosmetics, detergents and agrochemicals, are central to UK prosperity (sector size > £95bn GVA in 2021) and Formulation Engineering is concerned with the design and manufacture of these products whose effectiveness is determined by the microstructure of the material. Containing complex soft materials: structured solids, soft solids or structured liquids, whose nano- to micro-scale physical and chemical structures are highly process dependent and critical to product function, their manufacture poses common challenges across different industry sectors. Moving towards Net Zero manufacture thus needs systems thinking underpinned by interdisciplinary understanding of chemistry, processing and materials science pioneered by the CDT for Formulation Engineering at the University of Birmingham over the past twenty years, with a proven delivery of industrial impact evidenced by our partner's letters of support and three Impact Case Studies ranked at 4* in the recent Research Excellence Framework in 2021. A new CDT strategy has been co-created with our industry partners, where we address new user-led research challenges through our theme of Formulation for Net Zero ('FFN0), articulated in two research areas: 'Manufacturing Net Zero (MN0)', and 'Towards 4.0rmulation'. Formulation engineering is not taught in first degree courses, so training is needed to develop the future leaders in this area. This was the industry need that led to the creation of the CDT in Formulation Engineering, based within the School of Chemical Engineering at Birmingham. The CDT leads the field: we won for the University one of the 2011 Diamond Jubilee Queen's Anniversary Prizes, demonstrating the highest national excellence. The UK is a world-leader in Formulation; many multinational formulation companies base research and manufacture in the UK, and the supply of trained graduates, and open innovation research partnerships facilitated by the CDT are critical to their success. The CDT receives significant industry funding (>£650k pa), supported by 31 industry partners including multinationals: P&G, Colgate, Unilever, Diageo, Devro, Fonterra, Samworth Bros., Jacobs Douwe Egberts, Nestle, Pepsico, Mondelez, GSK, AZ, Lonza, Novartis, BMS, BASF, Celanese, Croda, Innospec, Linde/BOC, Origen, Imerys, Johnson Matthey, Rolls-Royce/HTRC, JLR Lucideon and SMEs: Aquapak, CALGAVIN and ITS/StreamSensing. Intra and cross cohort training is central to our strategy, through our taught programme and twice-yearly internal conferences, industry partner-led regional research meetings, student-led technical and soft skills workshops and social events and inter CDT meetings. We have embedded diversity and inclusion into all of our projects and processes, including blind CV recruitment. Since 2018 our cohorts have been > 50% female and >35% BAME. We will co-create training and research partnerships with other CDTs, Catapult Centres, and industry, and train at least 50 EngD and PhD graduates with the skills needed to enhance the UK's leading international position in this critical area. The taught programme delivers a common foundation in formulation engineering, specialist technical training, modules on business, entrepreneurship and soft skills including a course in Responsible Research in Formulation. We have obtained promises of significant industry and University funding, with 67 offers of projects already. EPSRC costs will be 44% of the cash total for the CDT, and ca. £27% of the whole cost when industry in-kind funding is included.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4281ad0ffb4c77f3212449e1c1a661bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4281ad0ffb4c77f3212449e1c1a661bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2019 - 2028Partners:Innospec (United Kingdom), Colgate Palmolive Company, AstraZeneca (United Kingdom), Unilever UK & Ireland, Mondelez International Limited +64 partnersInnospec (United Kingdom),Colgate Palmolive Company,AstraZeneca (United Kingdom),Unilever UK & Ireland,Mondelez International Limited,Lubrizol Ltd,Mondelez UK R and D Ltd,Manufacturing Technology Centre (United Kingdom),Centre for Process Innovation CPI (UK),Johnson Matthey (United Kingdom),Unilever (United Kingdom),Nestlé (United Kingdom),Diageo plc,RENISHAW,University of Birmingham,Innospec Environmental Ltd,Johnson Matthey,FiberLean Technologies,Atomic Weapons Establishment,Jacobs Douwe Egberts UK Production Ltd,IFPRI,Dupont Teijin Films (UK) Limited,Bristol-Myers Squibb Pharmaceutical Rese,Lexon (UK) Ltd,Rolls-Royce (United Kingdom),Rolls-Royce (United Kingdom),Renishaw (United Kingdom),Procter & Gamble (United States),Renishaw plc (UK),ASTRAZENECA UK LIMITED,Innospec Environmental Ltd,BASF (Germany),AWE,Imerys,Rich's,Imerys (United Kingdom),Procter & Gamble Technical Centres Ltd.,Centre for Process Innovation,Rich's,CPI,Lexon (UK) Ltd,FiberLean Technologies,Malvern Panalytical Ltd,Unilever R&D,University of Birmingham,MTC,BASF,DuPont (United Kingdom),AstraZeneca plc,Nestle,PepsiCo (United Kingdom),IFPRI,Colgate-Palmolive (United States),Lubrizol Ltd,Johnson Matthey Plc,BASF,INDUSTRIAL TOMOGRAPHY SYSTEMS PLC,Rolls-Royce Plc (UK),Industrial Tomography Systems (United Kingdom),Pepsico International Ltd,Doehler,Malvern Panalytical Ltd,Diageo (United Kingdom),Bristol-Myers Squibb (United Kingdom),Nestle SA,Jacobs Douwe Egberts UK Production Ltd,DTF UK Ltd,Doehler,Pepsico International LtdFunder: UK Research and Innovation Project Code: EP/S023070/1Funder Contribution: 5,505,860 GBPFormulation engineering is concerned with the manufacture and use of microstructured materials, whose usefulness depends on their microstructure. For example, the taste, texture and shine of chocolate depends on the cocoa butter being in the right crystal form - when chocolate is heated and cooled its microstructure changes to the unsightly and less edible 'bloomed' form. Formulated products are widespread, and include foods, pharmaceuticals, paints, catalysts, structured ceramics, thin films, cosmetics, detergents and agrochemicals, with a total value of £180 bn per year. In all of these, material formulation and microstructure control the physical and chemical properties that are essential to the product function. The research issues that affect different industry sectors are common: the need is to understand the processing that results in optimal nano- to micro structure and thus product effect. Products are mostly complex soft materials; structured solids, soft solids or structured liquids, with highly process-dependent properties. The CDT fits into Priority Theme 2 of the EPSRC call: Design and Manufacture of Complex Soft Material Products. The vision for the CDT is to be a world-leading provider of research and training addressing the manufacture of formulated products. The UK is internationally-leading in formulation, with many research and manufacturing sites of national and multinational companies, but the subject is interdisciplinary and thus is not taught in many first degree courses. A CDT is thus needed to support this industry sector and to develop future leaders in formation engineering. The existing CDT in Formulation Engineering has received to date > £6.5 million in industry cash, has graduated >75 students and has 46 currently registered. The CDT has led the field; the new National Formulation Centre at CPI was created in 2016, and we work closely with them. The strategy of the new Centre has been co-created with industry: the CDT will develop interdisciplinary research projects in the sustainable manufacture of the next generation of formulated products, with focus in two areas (i) Manufacturing and Manufacturability of New Materials for New Markets 'M4', generating understanding to create sustainable routes to formulated products, and (ii) 'Towards 4.0rmulation': using modern data handling and manufacturing methods ('Industry 4.0') in formulation. We have more than 25 letters from companies offering studentships and >£9 million of support. The research of the Centre will be carried out in collaboration with a range of industry partners: our strategy is to work with companies that are are world-leading in a number of areas; foods (PepsiCo, Mondelez, Unilever), HPC (P+G, Unilever), fine chemicals (Johnson Matthey, Innospec), pharma (AstraZeneca, Bristol Myers Squibb) and aerospace (Rolls-Royce). This structure maximises the synergy possible through working with non-competing groups. We will carry out at least 50 collaborative projects with industry, most of which will be EngD projects in which students are embedded within industrial companies, and return to the University for training courses. This gives excellent training to the students in industrial research; in addition to carrying out a research project of industrial value, students gain experience of industry, present their work at internal and external meetings and receive training in responsible research methods and in the interdisciplinary science and engineering that underpin this critical industry sector.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::38717b2d413809bce8e0cd8a875b0c46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::38717b2d413809bce8e0cd8a875b0c46&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
chevron_right