Powered by OpenAIRE graph

Process Systems Enterprises Ltd

Country: United Kingdom

Process Systems Enterprises Ltd

25 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/S023305/1
    Funder Contribution: 6,140,640 GBP

    We will train a cohort of 65 PhD students to tackle the challenge of Data Creativity for the 21st century digital economy. In partnership with over 40 industry and academic partners, our students will establish the technologies and methods to enable producers and consumers to co-create smarter products in smarter ways and so establish trust in the use of personal data. Data is widely recognised by industry as being the 'fuel' that powers the economy. However, the highly personal nature of much data has raised concerns about privacy and ownership that threaten to undermine consumers' trust. Unlocking the economic potential of personal data while tackling societal concerns demands a new approach that balances the ability to innovate new products with building trust and ensuring compliance with a complex regulatory framework. This requires PhD students with a deep appreciation of the capabilities of emerging technology, the ability to innovate new products, but also an understanding of how this can be done in a responsible way. Our approach to this challenge is one of Data Creativity - enabling people to take control of their data and exercise greater agency by becoming creative consumers who actively co-create more trusted products. Driven by the needs of industry, public sector and third sector partners who have so far committed £1.6M of direct and £2.8M of in kind funding, we will explore multiple sectors including Fast Moving Consumer Goods and Food; Creative Industries; Health and Wellbeing; Personal Finance; and Smart Mobility and how it can unlock synergies between these. Our partners also represent interests in enabling technologies and the cross cutting concerns of privacy and security. Each student will work with industry, public, third sector or international partners to ensure that their research is grounded in real user needs, maximising its impact while also enhancing their future employability. External partners will be involved in PhD co-design, supervision, training, providing resources, hosting placements, setting industry-led challenge projects and steering. Addressing the challenges of Data Creativity demands a multi-disciplinary approach that combines expertise in technology development and human-centred methods with domain expertise across key sectors of the economy. Our students will be situated within Horizon, a leading centre for Digital Economy research and a vibrant environment that draws together a national research Hub, CDT and a network of over 100 industry, academic and international partners. We currently provide access to a network of >80 potential supervisors, ranging from leading Professors to talented early career researchers. This extends to academic partners at other Universities who will be involved in co-hosting and supervising our students, including the Centre for Computing and Social Responsibility at De Montfort University. We run an integrated four-year training programme that features: a bespoke core covering key topics in Future Products, Enabling Technologies, Innovation and Responsibility; optional advanced specialist modules; internship and international exchanges; industry-led challenge projects; training in research methods and professional skills; modules dedicated to the PhD proposal, planning and write up; and many opportunities for cross-cohort collaboration including our annual industry conference, retreat and summer schools. Our Impact Fund supports students in deepening the impact of their research. Horizon has EDI considerations embedded throughout, from consideration of equal opportunities in recruitment to ensuring that we deliver an inclusive environment which supports diversity of needs and backgrounds in the student experience.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T022493/1
    Funder Contribution: 4,075,500 GBP

    The Horizon institute is a multidisciplinary centre of excellence for Digital Economy (DE) research. The core mission of Horizon has been to balance the opportunities arising from the capture, analysis and use of personal data with an awareness and understanding of human and social values. The focus on personal data in a wide range of contexts has required the development of a broad set of multidisciplinary competencies allowing us to build links from foundational algorithms and system to issues of society and policy. We follow a user-centred approach, undertaking research in the wild based on principles of open innovation. Horizon now encompasses over 50 researchers, spanning Computing, Engineering, Law, Psychology, Social Sciences, Business and the Humanities. It has grown a diverse network of over 200 external partners who are involved in ongoing collaborative research and impact with Horizon, ranging from major international corporations to SMEs, from a wide variety of sectors, alongside government and civil society groups. We have also established a CDT in the third wave of funding that will eventually deliver 150 PhDs. Our critical mass of researchers, partners, students and funding has already led to over 800 peer-reviewed publications, composed of: 277 journal articles, 51 books and book chapters, and 424 conference papers, in a total of 15 different disciplines. Over the years Horizon's focus has evolved from an emphasis on the collection and understanding of personal data to consider the user-centred design and development of data-driven products. This proposal builds on our established interdisciplinary competencies to deliver research and impact to ensure that future data-driven products can be both co-created and trusted by consumers. Core to our current vision is the idea that future products will be hybrids of both the digital and the physical. Physical products are increasingly augmented with digital capabilities, from data footprints that capture their provenance to software that enables them to adapt their behaviour. Conversely, digital products are ultimately physically experienced by people in some real-world context and increasingly adapt to both. This real-world context is social; hence the data is social and often implicates groups, not just individuals. We foresee that this blending of physical and digital will drive the merging of traditional goods, services and experiences into new forms of product. We also foresee that - just as today's social media services are co-created by consumers who provide content and data - so will be these new data-driven products. At the same time, we are also witnessing a crisis of trust concerning the commercial use of personal data that threatens to undermine this vision of data-driven products. Hence, it is vitally important to build trust with consumers and operate within an increasingly complex regulatory environment from the earliest stages of innovating future products. Our user-centred approach involves external partners and the public in "research-in-the-wild", grounding our fundamental research in real world challenges. Our delivery programme combines a bottom-up approach in which researchers are given the opportunity (and provided with the skills) to follow new impact opportunities in collaboration with partners as they arise (our Agile programme), with a top-down approach that strategically coordinates how these activities are targeted at wider communities (our Campaigns programme, with successive focus on Consumables, Co-production and Welfare), and reflective processes that allow us to draw out broader conclusions for the widest possible impact (our Cross-Cutting programme). Throughout we aim to continue to develop the capacity in our researchers, the wider DE research community and more broadly within society, to engage in responsible innovation using personal data within the Digital Economy.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/N025261/1
    Funder Contribution: 1,741,950 GBP

    Solid dose forms are the backbone of many manufacturing industries. In pharmaceutical therapeutics, tablets, capsules, dry powder inhalers and powders for re-suspension cover the vast majority of the £5.6Bn sales by this industry in the UK. Food (sales £67Bn) is the single largest industry of the UK manufacturing sector which totalled £365Bn sales in 2014 (Office of National Statistics). In all these manufacturing processes and in final use, the physical behaviour of the powder is at least as important as the chemistry. Stability, weight and content uniformity, manufacturing difficulties and variable performance are determined by decisions made during the formulation process Manufacturing problems are ubiquitous; the Rand report (by E.W. Merrow, 1981) examined powder processes and found on average 2 year over-runs to get to full productivity, and development costs 210% of estimates, due to incompatibility between powder behaviour and process design. In the intervening years, plant engineering techniques have developed, but the rationalisation of formulation decisions has never received more than cursory, empirical study. This project proposes to develop a Virtual Formulation Laboratory (VFL), a software tool for prediction and optimisation of manufacturability and stability of advanced solids-based formulations. The team has established expertise in powder flow, mixing and compaction which will be brought together for the first time to link formulation variables with manufacturability predictions. The OVERALL AIMS of the project are (a) to develop the science base for understanding of surfaces, particulate structures and bulk behaviour to address physical, chemical and mechanical stability during processing and storage and (b) to incorporate these into a software tool (VFL) which accounts for a wide range of material types, particle structures and blend systems to enable the formulator to test the effects of formulation changes in virtual space and check for potential problems covering the majority of manufacturing difficulties experienced in production plants. The VISION for VFL is to be employed widely in the development process of every new formulated powder product in food, pharmaceuticals and fine chemicals within five years of the completion of this project. VFL will consider four processes: powder flow, mixing, compaction and storage; and will predict four manufacturability problems: poor flow/flooding, segregation/heterogeneity, powder caking and strength/breakage of compacts These account for the majority of practical problems in the processing of solid particulate materials The OVERALL OBJECTIVES of the project are: (a) to fill the gaps in formulation science to link molecule to manufacturability, which will be achieved through experimental characterisation and numerical modelling, and (b) establish methodologies to deal with new materials, so that the virtual lab could make predictions for formulations with new materials without extensive experimental characterisation or numerical modelling. This will be achieved through developing functional relationships based on the scientific outcomes of the above investigations, while identifying the limits and uncertainties of these relationships.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V034723/1
    Funder Contribution: 1,543,630 GBP

    The UK pharmaceutical industry produces 16% of the world's well-known medicines, employs more than 66,000 people (200,000 more indirectly) and contributes over £8.8 billion to the UK GVA. The current covid-19 crisis has highlighted the need for the UK and the USA to have a strong, smart pharmaceutical manufacturing base. The FDA in the USA has identified continuous pharmaceutical manufacturing as a highly promising solution to these challenges by enabling lower capital cost, smaller footprint and highly efficient facilities, which can be distributed geographically, improve national security by reducing dependency on foreign suppliers and can produce multiple products on demand with minimum risk to quality. However, the UK Government Made Smarter Review highlights that we still have a way to go to achieve a Right First Time smart manufacturing system as an enabler for the digitalization of continuous manufacturing in pharmaceutical industry. Addressing these challenges are the domain of process systems engineers. By developing right-first-time (RFT) smart manufacturing systems incorporating Industry 4.0 concepts, we intend to address these key challenges in pharmaceutical manufacturing. Our hypothesis is that the development of a systematic framework for smart continuous pharmaceutical manufacturing can deliver key benefits to the industry including: - Reduced time to market of new products; - Reduced waste and increased resilience; and - Reduced cost of manufacture. To develop this framework, we have brought together a world leading team of process systems and pharmaceutical engineers from four universities in the UK and USA. An important and unique element of this proposal is the ability to validate state of the art models, control and optimization procedures on three cutting edge continuous manufacturing experimental platforms: (1) Consigma 25 wet granulation line at University of Sheffield (UK); (2) Dry granulation line at Purdue University (USA); and (3) Continuous direct compression line, also at Purdue. The outcome of this project will be a framework and computational tools for optimal design of pharmaceutical processes with a real-time process management system and a flexible real-time release testing framework, all verified at pilot scale.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.